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Figure 1: The BioSpark interface consists ofmechanism active ingredient clusters (A○) and a stream panel ( I○). Cluster cards

( B○) display species images, descriptions, and action buttons, enabling users to save mechanisms (C○), generate Sparks (D○),

explore Trade-offs ( E○), and use a Q&A chat ( F○). The stream panel ( I○) contains system- and user-generated ideas, which are

interactive and editable (Details in §4).

ABSTRACT

We present BioSpark, a system for analogical innovation designed
to act as a creativity partner in reducing the cognitive effort in find-
ing, mapping, and creatively adapting diverse inspirations. While
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prior approaches have focused on initial stages of finding inspira-
tions, BioSpark uses LLMs embedded in a familiar, visual, Pinterest-
like interface to go beyond inspiration to supporting users in iden-
tifying the key solution mechanisms, transferring them to the prob-
lem domain, considering tradeoffs, and elaborating on details and
characteristics. To accomplish this BioSpark introduces several
novel contributions, including a tree-of-life enabled approach for
generating relevant and diverse inspirations, as well as AI-powered
cards including ‘Sparks’ for analogical transfer; ‘Trade-offs’ for
considering pros and cons; and ‘Q&A’ for deeper elaboration. We
evaluated BioSpark through workshops with professional design-
ers and a controlled user study, finding that using BioSpark led
to a greater number of generated ideas; those ideas being rated
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higher in creative quality; and more diversity in terms of biologi-
cal inspirations used than a control condition. Our results suggest
new avenues for creativity support tools embedding AI in familiar
interaction paradigms for designer workflows.
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1 INTRODUCTION

Many innovations in design, technology, and science have been
driven by people finding and adapting analogical inspirations from
fields distant to their own. Analogical innovation refers to the
process of applying insights from one domain to solve problems
or create new designs in another. Whether Vetruvius explaining
how sound waves work through analogy with water waves [13],
the Wright brothers designing a lightweight wing control mech-
anism based on a bicycle inner tube box [37], or engineers part-
nering with an origami expert to furl a solar array into a narrow
rocket [50, 58, 75], such innovations have required their inventors
to deeply engage in a complex cognitive process of finding and cre-
atively adapting inspirations that had limited surface similarities
but deep structural similarities.

While such analogies may sometimes seem like ‘lightning strikes’
of serendipity, researchers have identified that analogical innova-
tion involves several cognitive stages of processing, each of which
can require significant mental effort [22, 23, 26]. First, finding
potential inspirations in distant domains is difficult because of
the challenge of identifying domains and inspirations that might
contain useful potential analogical mechanisms. However, even
when potential inspirations are found, significant cognitive effort
is needed as part of the broader process of analogical processing
to recognize and understand what the active ingredients of the
inspiration’s mechanisms are, such as key structural or functional
properties that enable its utility (e.g., the shearing properties of the
cardboard inner tube box). Once identified, another barrier involves
exploring how to map and transfer these mechanisms to the target
problem (a process known as analogical transfer). For example, in-
stead of four sides of a box, using a set of cables to create shearing
in two parallel planes of the wings). Finally, the mechanisms need
to be adapted to consider tradeoffs and limitations in the target
domain (e.g.,whether cables for connecting the wings could provide
a sufficient balance of rigidity and weight reduction for steering
the wings through shearing).

Supporting these complex needs in a single system has been
challenging, with most past approaches focusing on one or two
stages of the process and largely limited to a small, hand-coded set
of inspirations [9, 15, 28, 36]. Approaches to collecting inspirations
at a larger scale have begun to appear [17, 33, 34, 38], but have
mostly been limited to helping with the finding stage of analogical
innovation. Relying on users to do the hard work of determining
which inspirations could be relevant and how they could be adapted
can lead to them not noticing or putting in the effort to go beyond
surface similarities and try to understand how an inspiration could
be used; as noted in Kang et al. 2022, “the critical first step to-
wards analogical inspiration may be raising... enough attention and
interest above the initial ‘hump’ of cognitive demand” [38].

In BioSpark, we explore the idea of a LLM-powered computing
system acting as a creativity partner to proactively help with the
intellectual work of not only finding analogies but also mapping,
transferring, and adapting those ideas to the target domain. By
doing so we aim to help free up the cognitive effort of users to
engage in the creative process of exploring new design spaces and
considering more ideas more deeply than they would be able to
otherwise.

To achieve this, BioSpark explores several new design patterns
for partnering AI with human analogical ideation, including:

• A tree-of-life enabled approach for generating new and rele-
vant biological inspirations from a small set of ‘gold standard’
inspirations taken from AskNature;

• An analogical ideation interface leveraging familiar interac-
tion concepts from designers’ practice of browsing Pinterest
and curating moodboards that helps them recognize the ac-
tive ingredients of the inspirations’ mechanisms;

• Proactively generating ‘sparks’ that help users understand
the mapping and transfer between inspirations and their
design problem;

• Providing pro/con trade-offs to scaffold users in considering
how to adapt key aspects of the design problem;

• Supporting a free-form Q&A interface grounded in the in-
spiration and the design problem context to help users more
deeply consider and elaborate on inspiration mechanisms.

We instantiated BioSpark in a prototype system and evaluated
and iterated on it through a workshop study with 6 professional
designers, a formative study with 4 participants with design and
engineering backgrounds aswell as a user studywith 12 participants
of varied backgrounds. Our results suggest novel ways in which AI
support can be embedded into interfaces to support and augment
human creativity.

2 RELATEDWORK

2.1 Design by analogy

Throughout history, analogies have often driven breakthroughs
in science, engineering, and design (e.g., [13, 37, 50]). Yet, analogi-
cal innovation in human minds has proven rare due to the cogni-
tive challenges involved with the underlying analogical processing.
One challenge is the high sensitivity to surface-level similarity
during retrieval from memory that favors analogs with shared
visual or keyword similarities over the ones that share a deeper
underlying structure [23]. In addition, the heavy cognitive load

https://doi.org/10.1145/3706598.3714053
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incurred during analogical processing, even with just a few rela-
tions, significantly burdens working memory and leads to perfor-
mance degradation [24, 27, 29]. To support people with analogical
processing, researchers have designed various systems for anal-
ogy retrieval. One thread of research here focuses on modeling
analogical relations, albeit in limited scopes. This includes system
based on the structure-mapping theory [20–22], multiconstraints
theories (e.g., [32], connectionist designs [31, 35], and rule-based ap-
proaches [4, 7, 8]). Many methods involve labor-intensive processes,
such as the WordTree methodology [44]. Additionally, numerous
systems depend on hand-coded and meticulously structured data,
the curation of which is often resource-intensive (e.g., [28, 67]).

Recent work in computational methods for finding analogical
inspirations at scale have shown promising results using a signifi-
cantly simplified schema (e.g., the purpose and mechanism schema
in [33, 38]) with just a fraction of data (e.g., [10, 33, 38]). However
these systems primarily focus on facilitating the discovery of poten-
tial analogies and do not extend support to the subsequent, intricate
stages of design that follow. This involves navigating potential lim-
itations or trade-offs, which are essential for the successful transfer
of these analogies in real-world scenarios [3, 62, 67].

2.2 Bioinspired design

One particularly relevant thread of research in design-by-analogy
focuses on finding inspirations in biological organisms and sys-
tems [36]. However, prior approaches have been limited due to
their reliance on costly manual curation (e.g., AskNature [15] or
DANE [28]; for example, the researchers of DANE found that re-
describing a single biological organism in the Structure-Behavior-
Function framework can take approximately ∼40-100 hours per
model). Alternative approaches demonstrated the feasibility of us-
ing crowdsourcing to power supervised learning for identifying
scientific articles with biomemetic inspirations (e.g., [66, 73]), but
the cost of curating high-quality annotations presented a significant
bottleneck for scalability. Yet another line of research has explored
rule-based (e.g., [11]) or data programming [17] approaches, and
showed promising results, albeit potential concerns of their gener-
alizability and scalability.

Our iterative tree-of-life-based algorithm for expanding the
mechanism dataset builds on these threads of research, while also
leveraging recent advances in AI, such as Large Language Models
(LLMs), that present promising new opportunities for designing
scalable approaches for bio-analogy generation. However, naively
prompting LLMs in a zero-shot manner may still result in limited
diversity on abstract concepts [12]. One possible avenue of research
here is to further exploring knowledge-augmented or knowledge-
guided prompting, which has been previously explored in factual
Q&A for improving the factuality in answers to simple questions
(e.g., “Where did Alex Chilton die?”) by traversing a knowledge graph
known to contain relevant facts to contextualize LLM prompts,
for the goal of increasing the conceptual diversity in generation.
Another related thread here is recent work on self-feedback and
refinement techniques [46], that showed iteratively generating feed-
back on the LLM output using the same LLM and refining based on
it leads to better performance. Our tree-of-life enabled approach

takes inspirations from these prior works to develop an algorithm
that uses the knowledge structure for diversification.

2.3 Creativity Support Systems (CSTs)

BioSpark, in its goal of developing a creativity partner for ana-
logical innovation, also builds on the related work in Creativity
Support Systems (CSTs). Specifically, co-creativity [47] and human-
AI collaborative systems have been explored in the CST literature,
leading to related systems such as Drawing Apprentice [14], Due-
Draw [54], Creativity Sketching Partner [41], and Collaborative
Ideation Partner [42] which aimed to produce useful output for
building on human user input with a joint similarity to both the
design task and the input. The goal-driven approach in BioSpark
also focuses on the relevance to the task context, but differs from
these works in its emphasis on analogical relevance which relies
on structural rather than feature similarity.

Another related thread of research in the CST literature is sys-
tems that support analogies as an ideation method, as seen in re-
lated works such as MetaMap [40], WikiLink [76], Idea-Inspire [62].
These works focus on the initial stages of helping users find relevant
analogies, but stop short of helping users in the cognitive process
of analogical transfer. While transfer has been studied as a critical
failure point in analogy for decades in cognitive psychology [27], it
remains understudied in the CST literature, perhaps due to the dif-
ficulty of even finding analogical inspirations, let alone addressing
how to transfer them to the target domain. BioSpark contributes
to this gap in the literature by helping designers recognize, transfer,
explore and elaborate on new design spaces through analogies and
their example instantiations, which [43] identified as “grounded
metaphors” and highlighted as open research areas.

2.4 LLMs for ideation and co-creation

Recent advances in LLMs also suggest the potential for scalably
augmenting analogical innovation for users throughout the entire
cognitive process, from finding potential analogical inspirations to
mapping them to the problem domain to helping users more deeply
engage with their mechanisms and trade-offs. LLMs have shown the
capability to infer specific analogies and to generate ideas relevant
to a design goal (cf. [69]). They also can serve as more flexible
natural language processing components in an interface, allowing
for powerful interface augmentation approaches (e.g., [5, 19, 39, 45]
as well as direct interfaces using chat-based dialog (e.g., [1, 49, 55]).

However, studies examining the use of LLMs and generative AI
in the creative process have shown that improperly incorporating
LLMs into the creative process can end up doing more harm than
good. Using generative AI systems such as image generation (e.g.,
Midjourney) or text generation (e.g., ChatGPT) has been shown to
lead users to become more fixated rather than more creative [68].
Several core properties to LLMs have been identified as potentially
problematic, including tendencies for inaccurate inferences and
hallucinations, user fixation on the initial prompts they enter, and
overly accepting the results of AI-generated ideas rather than adapt-
ing them or using them to further explore the design space [42, 68].
These results suggest a more nuanced approach to incorporating
LLMs and AI into the analogical innovation process may be needed.
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3 FORMATIVE STUDIES AND DESIGN GOALS

We developed BioSpark in an iterative process involving an initial
formative workshop study with professional automobile designers
for investigating their current workflows of getting inspirations
for concept design, followed by a design probe with additional
designers using a partial development of the initial BioSpark’s goal-
driven data discovery pipeline which generated a set of analogical
mechanism inspirations (§4.4).

Our initial day-long workshop included six professional design-
ers from a large multinational company specializing in mobility
design. The workshop provided insights into how our system could
integrate into their daily workflows, highlighting basic design re-
quirements such as the importance of visual, goal-centered

inspirations and leveraging familiar interfaces for a system
that could be incorporated into their practice, which provided con-
straints for the development of BioSpark.

Informed by the workshop findings, we developed a design probe
to further investigate challenges in AI-augmented bioinspired de-
sign. The probe consisted of a set of images of inspirations arranged
in a moodboard or Pinterest-like visual style that users could scroll
through. Inspirations were sampled from a prototype of the inspira-
tion generator we describe later, and focused on two design briefs:
designing a secure bike rack and improving driving on slippery
roads. This included mechanisms ranging from geckos climbing
walls to slime lubrication. Each individual mechanism had an associ-
ated visual image retrieved using online search (see Appendix A.1).
To help designers experience what potential AI assistance could feel
like we included prototype functionality for designers to interact
with these inspirations (i.e., buttons that would prompt an LLM to
provide an additional explanation, or to compare or combine a pair
of mechanisms; see more in Appendix A.2).

We recruited four designers (none of whom participated in the
earlier workshop) with backgrounds in design and engineering to
provide feedback as pilot participants. Participants found aspects of
the prototype valuable, and all did find mechanisms that inspired
new design ideas (e.g., the coiling of octopus tentacles and lizard
tails inspiring bike rack components that could expand and contract
with turbulence; or scale and fur arrangements in rodents inspiring
groove patterns on tires that would create more downforce on
slippery roads).

However, they also brought up several fundamental challenges
with the approach that motivated BioSpark. In particular, all par-
ticipants noted a similar theme in terms of the challenges involved
with recognizing and understanding the ‘active ingredients’
(i.e., the core abstraction underpinning how each mechanism actu-
ally works) of inspirations with respect to the design problem. For
example, it could also be difficult to understand how the textual
descriptions of individual mechanisms were relevant to the design
problem (e.g., “I want to choose an interesting animal that can support

force and dynamics... but there are a lot of bugs, birds, and dolphins,

not sure how to think about them as relating to turbulence reduction”

– P3).
Participants also wanted additional support for envisioning how

inspirations would transfer into target design domains. Par-
ticipants commented that assisting them with applying active in-
gredients to focused areas in the target domain could help with

generating new design ideas based on distant analogies “‘slime

secretion’ as relating to the attachment/detachment mechanism and

the friction aspect rather than the slime itself would be more helpful”’

– P1; “Maybe it (the system) can tell me about skin texture of frogs

for generating ways to modulate it and manage turbulence?” – P2).
Finally, participants noted the desire for deeper elaboration on

inspirations. This included understanding benefit and drawbacks
of the mechanism with respect to dimensions relevant to its effec-
tiveness in the problem domain, as in this quote from P4: “A few

words to highlight the most interesting properties or dimensions for

efficiency, durability, or versatility would be very helpful. I want to

get a bigger picture here” (P4). It also included understanding more
details about a particular mechanism, as commented by P1: “‘Bike
rack’ and ‘slime’ are somewhat contradictory but it (slime mecha-

nism) makes me think about the attachment aspects of the design...

maybe new ideas around loading and unloading of bikes that have

dynamically adjusting surface friction... I’m going to click “explain”

on slime... (after the detailed explanation loads) I wish I could know

more about the lubrication mechanism aspect of slimes”.

4 BIOSPARK

We instantiated these design goals in BioSpark, with the high level
intention of acting as a creative partner in the analogical design and
innovation process beyond simply finding inspirations to proac-
tively helping the user understand the key solution mechanisms
in those inspirations, how to transfer them to their own problem
domain, and to more easily consider their trade-offs on the prob-
lem’s design constraints or elaborate on more information about
their details and characteristics.

To support these functions in a simple and familiar interaction
the AI provides its suggestions on mappings between inspirations
and the problem as idea ‘spark’ cards that are added to a sidebar
whenever the user saves an inspiration; ‘trade-off’ cards that con-
textualize the pros and cons of an inspiration’s mechanism within
the problem domain; and Q&A cards that allow the user to submit
free-form queries to the LLM which are automatically contextual-
ized with the problem and inspiration contexts. As the user engages
with the system a typical flow involves them perusing and saving
inspirations, and engaging with the cards in the sidebar to more
deeply consider particular mechanisms or the design spaces they
represent.

In the following sections we describe in more detail the design
of the system, starting with a a detailed description and a scenario
walkthrough of the system.

4.1 Scenario

Consider an automotive designer, Sarah, looking for inspirations
that could spark new ideas for novel bike rack design. When she
arrives at the BioSpark interface, she first scrolls through the board
UI on the left of the screen to review different clusters of mechanism
active ingredients. She is initially intrigued by the ‘exoskeleton’
cluster, which shows an image of a froghopper, because the ex-
oskeleton structure may provide insights for new skeletal bike rack
designs. She clicks the cluster card (fig. 1, A○) to examine its details
further. The mechanism description in the modal that expands out
on her click highlights ‘chitin’, as strong yet flexible material, that
can absorb and distribute the force of impact.
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She then finds another mechanism that seems counter-intuitive
yet interesting, the mucus and muscular foot of ‘Architaenioglossa’
– an order of snails – as potentially interesting active ingredients
for the problem. She clicks on the ‘spark’ button to receive inspi-
rations for creatively adapting the active ingredients (fig. 1, D○).
She receives two sparks in response; the first, titled ‘Mucus-Glide
Bike Mount’, describes an idea that uses hydrogel coating to re-
duce friction in motion. Intrigued by the idea, but concerned with
the durability of hydrogel in various weather conditions, she asks
BioSpark using the ‘Q&A’ button (fig. 1, F○): “what are good can-
didate hydrogel coating materials? Also consider weather situations

(frigid cold or precipitation) and suggest materials robust to such

conditions.”. BioSpark returns an information card that provides
alternative material choices, such as Polyacrylamide Hydrogels,
described as capable of maintaining their mechanical strength and
elasticity in a wide range of temperatures and as resistant to degra-
dation in wet conditions, or Polyvinyle Alcohol (PVA) Hydrogels,
notable for excellent mechanical properties and withstanding re-
peated freeze-thaw cycles while maintaining a low-friction surface
even when wet, which makes them an appealing case for use in
cold weather conditions (the Q&A card in the top of the stream,
fig. 1, I○). She writes down these materials as potential leads to
pass on to the engineering research team later, and clicks on the
‘Trade-off’ button (fig. 1, E○) to learn more about the potential dis-
advantages of a design that incorporates a lubricant-like material
directly on the surface of the rack where bike wheels are loaded
on to. The returned trade-offs card raises cleaning difficulty as a
potential concern, which she uses to ideate related usage scenarios
and constraints involved to develop the idea further.

B A

D

C

Figure 2: The modal view of a clicked mechanism cluster

shows additional mechanism and active ingredient details

(A○). The same action buttons featured on the main page of

the interface ( B○) are shown, as well as the ‘See more details

on Perplexity.ai’ for finding additional details and related sci-

entific researech (C○), and a carousel displaying other species

that belong to the cluster which can be viewed by clicking

on any of the images (D○).

4.2 Leverage familiar interfaces and behavior

Consistent with findings from the design workshop we aimed to de-
sign a system that could leverage familiar interface paradigms and
existing behaviors in new ways. We based our overall design on the

concept of a mood board, similar to Pinterest, where designers nor-
mally scroll through and collect many possible inspirations. To this
end we added a timeline-style side pane that could act as a central
focus for AI suggestions and as a scratch and organization space for
the user to externalize and keep track of their thinking and ideation
process separate but related to their foraging for inspirations.

To support the side pane’s use as an organization or triage space
we also enable quick filtering of different types of AI-provided
information cards (see fig. 1, top of the stream I○), as well as deleted
items with support for restoration. Users can build off any cards
in the stream to explore the design space in a non-linear fashion,
with that spark anchoring context for addition exploration.

BioSpark was implemented using React.js for the interface
and the Flask server in Python3.11 for the backend components.

4.3 Visual representation

To support the design goal of visual representations of inspirations
we were inspired by AskNature.org, a popular web repository for
bio-inspired design. AskNature pages are designed to include a
prominent close-up and centered portrait of a species that creates
a striking visual and invokes curiosity.

To achieve this we used Google Search and Adobe Stock Images
for retrieving relevant inspiration images. Directly searching on
Google using its API with an animal name or mechanism descrip-
tion query often resulted in images such as book covers or graphs
in related research paper, which were less effective. Conversely,
using Adobe Stock Images1 with animal species names as queries
sometimes led to high quality photos but other times the animal
was shown in the distance or background, and coverage was lim-
ited. Therefore, for each species we combined the top-5 results from
Google Search and Adobe Stock Images to create a set of images,
and used GPT-4V (gpt-4-vision-preview) to rank each of the
species’ images in terms of the visual focus and the potential value
for mechanism understanding (fig. 9; full prompt in Appendix B.1.1
and the score and rationale of each image in Appendix B.1.2). The
highest-scoring imagewas chosen to represent each species, and the
results appeared sufficiently accurate for the needs of the prototype
system.

4.4 Goal-driven inspiration discovery

Finding biological inspirations is a longstanding research challenge,
as discussed in the related work. This challenge is made more diffi-
cult when driven by a specific design goal, which might be relevant
to only a tiny proportion of possible biological inspirations. Instead
of searching for needles in a haystack (e.g., through various means
such as crowdsourcing [66, 73], rule-based programs such as [11],
data programming [17]) we explore the idea of leveraging recent
advances in language model training to use LLMs as a knowledge
retriever. However, in comparison to existing approaches such as
fine-tuning with a set of biological examples (e.g., from AskNa-
ture [74]) with no resulting control over the areas of the design
space explored or the diversity of the resulting inspirations found,
we introduce an approach that introduces both structure and diver-
sification.

1https://stock.adobe.com

https://stock.adobe.com
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(a) breadth-focused; (b) depth-focused

smooth-hound shark

(manage impact, unique 
skeletal structure composed 

of unmineralized cartilage 
enveloped by a thin layer of 
mineralized tiles known as 

tesserae, stingray)

Chondrichthyes

Structured Expansion (iterative)

(a)

(b)

Seed Inspiration

(manage impact, mineral 
arrangement in vertebrae, 

smooth-hound shark)

(problem, mech. inspiration, species) Triplets

LLM
Species

Class

Generated Inspiration

Stingray
Species

Query Problem
(e.g., “Manage impact” from 
the Biomimicry Taxonomy)

Seed Dataset
(e.g., AskNature)

1

2

3 Tree-of-life Hierarchy 
Construction

4

…x N

Prompt Input

Figure 3: Goal-driven Mechanism Inspiration Generation Pipeline. The pipeline begins from 1○ a query problem, such as a

function ‘Manage Impact’ from the BioMimicry Institute’s Taxonomy which covers a broad range of problems. The problem is

used to 2○ search AskNature.org, which organizes species or innovations according to the functions, to provide seed data. 3○
This data is structured into the (problem, mechanism, species) schema and the species names are used to prompt an LLM to

construct the tree-of-life hierarchy. 4○ The hierarchy is traversed to identify expansion sites at the frontier, here instantiated

as sparse branches on the tree with high diversification opportunities, determined in the breadth- or depth-focused manner.

The sites along with the problem context and existing mechanisms in the dataset are provided to contextualize the generation

and to jointly enforce diversification and relevance filtering. The generation continues iteratively until a stopping condition

is met. While the pipeline uses specific data sources in this example, the approach is source-agnostic and adaptable to other

contexts (see text).

Our approach conceptually follows the hierarchy-based expan-
sion mechanism from theWordTree method [44] that demonstrated
how up-then-down traversal on an abstraction hierarchy in struc-
tured brainstorming settings could lead to novel insights. Here, we
design a similar approach for structurally expanding a seed dataset
(in our case, AskNature biological inspirations) but instead of an
arbitrary abstraction hierarchy we use a structured hierarchy la-
tent to most biological inspirations: the Tree-of-Life2 model. This
approach anchors our expansion algorithm on species of nature
as a mediator for exploring new spaces of mechanisms, as species
often adapt to changing natural environments by evolving with
new mechanisms.

Concretely, starting from a query problem ‘manage impact’, an
example seed mechanism found on AskNature.org may be the min-
eral arrangement in smooth-hound shark vertebrae post3 (fig. 3).
We structure this into a triplet of (problem, mechanism inspiration,
species): (‘manage impact’, ‘mineral arrangement in smooth-hound
shark vertebrae’, smooth-hound shark) (details in Appendix B.2.1).
From the seed triplets, we first construct a 7-level tree-of-life hierar-
chy using GPT4 consisting of the {domain,kingdom,phylum,clas
s,order,family,genus,species} levels by prompting it with the
name of the species. In our evaluation using 90 ‘ground-truth’ tax-
onomies (sourced from Wikipedia’s ‘biota’ scientific classification
information boxes), we find satisfactory accuracy levels ranging
between 94.4% – 100% for each level on the taxonomy (Table 6,
Appendix B.2.3).

We then traverse the constructed tree-of-life hierarchy to identify
the directions of expansion that have high potential for diversifi-
cation. We design two approaches – breadth- and depth-focused

2https://en.wikipedia.org/wiki/Tree_of_life
3https://asknature.org/strategy/minerals-strengthen-vertebrae/

expansions – to this end, and estimate the potential for diversifica-
tion as sparsely populated branches on the hierarchy, as expanding
from them is likely to result in new species that are not currently
represented in the dataset.

In breadth-focused expansion, we design a prompt (fig. 11 in
Appendix B.2.2) that requests GPT4 to generate sibling nodes of
a given node, excluding the previously generated nodes to avoid
duplicate generation. In depth-focused diversification, we filter
nodes at a given level (e.g., ‘order’) and select the five with the
fewest children (those having the greatest opportunity for vertical
exploration), and design a prompt (fig. 10 in Appendix B.2.2) to
prompt GPT4 for children nodes generation.

To maintain the relevance to the query problem, we add the
descriptions of the query problem along with specific constraints
to the prompt to contextualize the generation and to jointly enforce
diversification and relevance filtering. After this process the sys-
tem generates new mechanism inspirations. Using the seed triplet
(‘manage impact’, ‘mineral arrangement in smooth-hound shark
vertebrae’, smooth-hound shark) as an example, one example of
the newly generated mechanism inspirations may be the unique
skeletal structure composed of unmineralized cartilage enveloped
by a thin layer of mineralized tiles known as tesserae in stingrays.
Both stingrays and gray smooth-hounds are species of the class of
jawed fish Chondrichthyes. The newly generated data is incorpo-
rated back to the tree-of-life hierarchy updating its frontier, and
the algorithm runs iteratively until a stopping condition is met.
Approach Generalizability. While the pipeline uses specific data
sources here, the general approach is agnostic to the source of
data and can be applied to any sources that can be turned into
the problem-mechanism-species schema. Relevance to the query
problem during data generation is preserved through contextualized
prompts that integrate constraints and problem descriptions, which

https://en.wikipedia.org/wiki/Tree_of_life
https://asknature.org/strategy/minerals-strengthen-vertebrae/
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are parameterized in the current system implementation and is
straightforward to adapt to new user query. At run time, active
features also maintain relevance through contextualized prompts,
which are also currently parameterized in the prompt design for
adaptation to user input.

4.5 Recognition

4.5.1 Recursive Clustering of Active Ingredients. One way to help
users recognize relevant inspirations is to cluster organisms with
similar mechanisms together to improve the efficiency of scanning
for diverse inspirations. In order to organize the active ingredients
in semantically meaningful groups, we adapted a density-based al-
gorithm DBSCAN to re-cluster those mechanisms it could not initially
cluster with a gradually relaxing minimum distance parameter 𝜖 .
This approach had the benefit of fixing the relatively straightfor-
ward clusters (i.e., groups of mechanisms with very similar surface
text forms, resulting in very low distances among them in the em-
bedding space) early on, and by lowering the sensitivity threshold
subsequently in order to identify less obvious yet coherent clusters
(i.e., groups of mechanisms that look different in the surface text
form yet are semantically related, resulting in relatively higher
distances among them). After the final run of the algorithm, mech-
anisms that could still not be clustered were appended to the end
of the list.

4.5.2 Active Ingredient Extraction. Another way to improve recog-
nition brought up by participants in our pilot study is to generate
cluster descriptions more informative about their active ingredients,
or transferable concepts that enable the mechanisms. To do so we
used GPT-4 (gpt-4-turbo-preview) with a prompt (Appendix B.3)
to extract active ingredients from mechanism outputs from the ear-
lier diversification and goal-driven generation steps (§4.4). In the
system message we instruct the following for identifying active in-
gredients that we found useful from pilot testing: 1) shorter length
(i.e., 15 words or less), which was easier to skim and increased the
cluster separation by excluding secondary features of commonality
among the species, 2) descriptions with a verb or a verb phrase,
which was easier to parse as they often presented the information
in the form of ‘what acts upon what’, and 3) concrete active ingre-
dient examples. In the user message we provide the mechanism
description to process accordingly.

4.6 Transfer

4.6.1 Sparks. As discussed in prior work, it is cognitively demand-
ing to transfer an inspiration to the target domain of a design prob-
lem, involving identifying the relevant features to transfer, how
those features map to features in the new domain, and adapting any
unmapped or missing elements [22, 32]. There is also a question
of how and when such a mapping should take place – it is expen-
sive both computationally and from a user-attention perspective to
compute and show mappings for every potential inspiration.

Here we introduce the interaction paradigm of ‘sparks’ to sup-
port analogical transfer and the computational approach to enabling
them. Sparks are generated when a user interacts with an inspira-
tion to save it as potentially interesting, passing an initial threshold
of interest but not necessarily requiring the user to have deeply
engaged with mapping that inspiration to how it would work in
the target domain, i.e., leveraging a ‘spark’ of interest from the

user. Within seconds of indicating interest in an inspiration, the
system generates two spark cards at the top of the sidebar stream,
attracting the user’s attention. Text on the spark cards is large
enough for the user to start reading the first few lines with little
effort, helping them to see how the inspiration could be applied to
the target domain. The generation of two sparks aims to prevent
fixation in the use of the inspiration and present multiple solution
paths which could lead to schema induction and the user exploring
even more of the design space. Thus, the design of sparks is aimed
at scaffolding the mental process of transfer by reducing cognitive
effort at each step and directing attention to potentially fruitful
areas in an approach aimed at leveraging natural practices and that
recognizes the designer’s need for agency.

Two sparks are generated using GPT-4 (gpt-4-turbo-previe
w) each time the user saves an inspiration or clicks on the ‘spark’
button (fig. 1, D○) on a mechanism. Each spark card also includes
helpful features such as a caret for expanding/collapsing the card,
the timestamp of creation, a clickable thumbnail (fig. 1, J○) show-
ing the source mechanism, which expands the modal view upon
clicking it, and control buttons (fig. 1, K○) for further generating
new sparks of the spark content, Q&A, and deletion. The content
of each spark is directly editable. The spark-generation prompt
(Appendix B.4.1) contextualizes the user-selected mechanism in-
spiration with the design problem description and the constraints
provided with the problem. We instruct GPT-4 to be succinct when
generating a spark (i.e., under 500 characters) and to provide a
descriptive title.

One challenge when developing sparks was that generating mul-
tiple sparks for the samemechanism inspiration led to highly similar
sparks, despite explicit instructions included in the prompt that
requested diversification in generation. To address this, we adapted
feedback-augmentation approaches such as self-refine [46] to im-
prove diversity by adding the most recently generated 20 sparks as
part of the prompt, and requesting that the new generation be novel
and not redundant with them. Through validation on 3800 pairs
of sparks we found that semantic diversity (as measured by cosine
similarity, cf. [25, 30, 64]) was significantly higher when precedent-
based diversification was used (M=.24, SD=.073) than not (M=.17,
SD=.090) (𝑡ind.(7291.87)=-42.41, 𝑝« .0001). See Appendix B.4.2 for
more analysis details.

4.7 Elaboration

4.7.1 Trade-off Analysis. As discussed in both the workshop and
the design probe as well as in prior work, the process of analogical
transfer in design rarely ends with mapping. Designers often need
to elaborate and drill down on the particular mechanisms suggested
by the inspirations to understand how they would actually work,
their physical limits, and pros and cons of different approaches in
the context of the design problem. To address this with a consistent
interaction paradigm as the spark cards we introduced ‘trade-off’
cards. The goal of trade-off cards is to not only help users who are
looking for specific elaborations already, but to proactively suggest
dimensions on which users might want to elaborate and drill down
further.

We generate a new trade-off analysis card using GPT-4 (gpt-4-
turbo-preview) each time the user clicks on the trade-off button
(fig. 1, E○) on a mechanism. We design a trade-off analysis prompt
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(detailed in Appendix B.5) to request the generation. In the prompt
we contextualize the user-selected mechanism inspiration using the
design problem description and the constraints provided with the
problem. We instruct GPT-4 to return the ‘pros’ and ‘cons’ of the
mechanism inspiration in the context of the design problem using
a markdown table format that places each pro-and-con pair in a
new row, and give each item in the table a succinct (3 words or less)
label. In the view, we display the analysis in each trade-off card in
the stream (fig. 1, I○) and implement a scrollable and formatted
table view using React-Markdown4 and remark-gfm5.

4.7.2 Q&A Handling. Many of the elaboration questions brought
up in the pilot study by participants, such as “I wish I could know
more about the lubrication mechanism of slimes”, are not easily
captured in preset queries such as trade-offs. To support more
flexible elaboration we introduce Q&A cards, which allow the user
to ask any question they would like to the LLM with the context of
the design problem and inspiration already included. Q&A cards
also serve as a general purpose catch-all to probe what kinds of
questions users might want to ask that haven’t yet been explicitly
designed for in the system.

To fluidly respond to free-form user questions in the Q&A text
area (fig. 1, F○), we send GPT-4 a prompt that instructs the model
to answer the question and includes information about the source
mechanism and the design brief context in its system prompt por-
tion, while the user prompt portion includes the question itself
(fig. 17, Appendix B.6). To help users understand and recall the
provenance of the generated response, we send another GPT-4 re-
quest for a rationale and appropriateness assessment. This rationale
is then featured as a tooltip next to the timestamp on the response
card (fig. 1, ?○ icon in the header of each card in the stream I○).

4.7.3 Drill-down on related research. Another aspect of drilling
down on an inspiration raised in the pilot study was a request
for more information about a particular mechanism, specifically
web or scientific resources about it. Although not a primary focus
of our main study goals, we did include a rudimentary support
for this need to probe users’ interest, through linking them to a
generative AI search engine that provided cited web sources for a
given mechanism (details of its implementation in Appendix B.7.

5 USER STUDY

To investigate how BioSpark affected bio-inspired design genera-
tion we conducted a within-subjects study in which participants
experienced both BioSpark and a baseline condition for two design
problems. Our goal in this study was to evaluate the combined value
of the design decisions made in BioSpark on creativity-related
outcomes including the quality, amount, and diversity of ideas
generated, while using an analysis of participant think-aloud and
post-study interview and survey data to explore participants’ ex-
periences with different features and functionality. Towards this
goal we explored appropriate baseline conditions for comparison
that would provide users with a similar set of resources while cor-
responding to what designers in our workshop and pilot study

4https://github.com/remarkjs/react-markdown
5https://github.com/remarkjs/remark-gfm

might access for bio-inspired design today. The final baseline con-
dition selected provided participants with access to AskNature.org,
a popular bio-inspired design inspiration site which served as the
seeds to BioSpark’s generation algorithm, and with a ChatGPT
terminal. We leave for future work more nuanced conditions such
as ablation studies of various features or augmentation of the Chat-
GPT terminal (such as through persistent context, custom GPTs, or
fine-tuning).

5.1 Methodology

We employed a within-subjects study design to compare BioSpark
with a baseline system for inspiration and a shared Google Spread-
sheet participants accessed to write down their own ideas. We chose
two design problems for user ideation, including how to design
wheelchairs that allow users to go up the stairs easily and how to
design an innovative bike rack for sedans. These problems were
chosen because they involve multiple, potentially competing con-
straints (e.g., lightweight but durable) and were pilot tested for
being able to be completed within the timed ideation task.

(The 'Wheelchair' problem) Design wheelchairs that can also
↩→ allow users to go up the stairs easily.
Constraint 1 (Lightweight yet Durable Construction): The
↩→ wheelchair should be lightweight and be able to
↩→ withstand a heavy load without structural failure.

Constraint 2 (Compact and Foldable Design): The wheelchair
↩→ must be foldable to a 1/4 of the volume within 30
↩→ seconds without the use of tools.

(The 'Bike rack' problem) Design innovative bike racks for
↩→ sedans.
Constraint 1 (Integration without Interfering with
↩→ Aerodynamics): The bike rack's design must not
↩→ significantly reduce the vehicle's fuel efficiency when
↩→ installed and with bikes mounted.

Constraint 2 (Versatility in Accommodating Different Bike
↩→ Types): The rack must be able to securely hold at least
↩→ three different bike frame sizes (e.g., 16", 20", and
↩→ 26") without the need for additional adapters.

We randomly assigned problems to conditions for the main timed
tasks (20 minutes each), counterbalancing the order of presentation
using three 2x2 Latin Square blocks. Participants followed a fixed
procedure in the study, which took place remotely using Zoom:
Introduction, Consent, Demographics survey; Tutorial (detailed in
Appendix C.1) of the first system via screensharing; Main task for
the first system (20 min); Rating task for the first system (only in the
BioSpark condition); Survey for the first system; alternating and
repeating for the second system; followed by a debrief. Participants
were asked to share their screen during the timed tasks and think-
aloud.

To probe how participants felt about the utility of different in-
formation generated using various AI-based system features, after
BioSpark’s main task, participants were also presented with a

https://github.com/remarkjs/react-markdown
https://github.com/remarkjs/remark-gfm
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rating interface that showed a list of saved Sparks, Q&A, and Trade-
off cards along with a 5-point Likert-scale for them to rate their
usefulness in their process.

To analyze perceptions of usefulness we collected participants’
subjective ratings to a modified Technology Acceptance Model
survey questionnaire items focused around task performance and
easiness of learning from [71] (4 items) using a 7-point Likert scale
(1: strongly disagree, 7: strongly agree). In addition, we employed
questions focused on serendipity and exploration adapted from [48,
53] (9 items) and the questions on the value of AI assistance and
the quality of inspirations found in the system.

5.1.1 Participants. We recruited 12 researchers (7 women, 5 men)
through advertisement on Upwork6 and email lists at a State Arts
College. Participants’ background included professional UX design
experience (6), professional illustration and graphic design (1), PhD
in Psychology (3), and a current undergraduate student in Arts
and Design (1) and a master’s student in AI and Data Science (1).
Participants’ average age was 36.1 years (SD=9.91).

5.1.2 Baseline. Participants were given 5 URLs from AskNature,
each pointing to a functional category equivalent to those that were
used for the BioSpark backend dataset pipeline: Manage Impact,
Manage Tension(Manage Tension), Manage Compression, Manage
Turbulence, and Modify Speed7. Before the baseline task began,
participants organized their screen by opening up all 5 tabs in their
browser on the left-hand side of the screen and sign-in and open the
ChatGPT8 interface on the right-hand side of the screen. They were
instructed to freely use the platforms to help themselves understand
and ideate with mechanism inspirations found on AskNature for
the design problems. Each participant was also instructed to write
down the ideas they come up with in the process in a prepared
Google spreadsheet, with a brief description of the species that
inspired each idea.

6 RESULTS

6.1 Creative idea quality and quantity

We begin discussion of the results with one of the most critical
questions: did BioSpark result in higher quality creative ideas?
Although creative quality can be defined and operationalized in
many ways, one common approach in the creativity literature is
to break down an idea’s creative quality into the dimensions of
novelty, value, and feasibility [61, 72]. By combining these three
dimensions, often using a penalizing function for being low on any
dimension such as the geometric mean, researchers have attempted
to balance trade-offs between these factors into a holistic judgment
of creative quality.

Following this approach we created a rubric operationalizing
novelty as how unique versus common an idea is found to be in the
world. Value corresponded to how effectively the idea addresses the
main challenge in the problem (e.g., how well does the idea directly
help wheelchair users go up the stairs more easily?) as well as the
main constraints (e.g., how lightweight or foldable is it?). Feasibility
6https://www.upwork.com/
7(Manage Impact) https://rb.gy/rvz17u; (Manage Tension) https://rb.gy/t3se2z; (Manage
Compression) https://rb.gy/xvogjb; (Manage Turbulence) https://rb.gy/9apgoq; (Modify
Speed) https://rb.gy/r7o2c8
8https://chat.openai.com/

was operationalized as the ease of achieving the creation of the idea
with current resources and technology. These three dimensions
were combined using the geometric mean into an aggregated score
representing the overall creative quality of an idea.

To judge quality we recruited as a domain expert a senior PhD
student at an R1 institute in North America with expertise in build-
ing systems augmenting wheelchair users’ mobility. The expert
recruited had practical experience in designing products employed
by wheelchair users, including broad knowledge of the feasibility of
both physical constraints such as the materials used and their con-
figuration and reliability, as well as user constraints such as what
types of products would be likely to be used by wheelchair users.
The first author and the expert met to discuss the assessment rubric
using 5 randomly selected ideas for each of the two design problems
used in the study (see Appendix C.2). Upon reaching agreement on
the rubric, the first author and the expert independently judged the
quality of remaining ideas blind to condition. Intraclass Correlation
Coefficients showed a significant level of reliability between the
judges on the independently coded set of examples: 0.94 (Novelty),
0.74 (Feasibility), 0.90 (Value), following [72] in which the more
conservative ICC(2,k) method is used. To further validate the relia-
bility of the feasibility scores, which could be especially sensitive to
domain expertise, we also involved an experienced product design
expert (one of the paper’s authors) who independently assessed
each idea blind to condition and provided detailed rationales for
the same 10 examples the two judges used for discussing the rubric.
This expert had an undergraduate degree in engineering design
and a Master’s and Ph.D. in Mechanical Engineering specializing in
engineering design, with over 16 years of experience in developing
mechanical, mechatronic, and software-based systems. An analysis
of their reliability scores showed a strong and significant correla-
tion with the judges’ scores (Pearson’s correlation coefficient = 0.85,
𝑝 = .002).

The final scores were computed by averaging the two judges’
scores on each dimension and combining them using the geometric
mean into a single overall score, as per common procedure in the
literature (e.g., [61, 72]). The summary statistics of scores in each
dimension are as follows:

Condition Novelty Feasibility Value

Baseline 3.9 (1.67) 6.8 (1.37) 3.8 (1.68)
BioSpark 7.1 (1.03) 5.7 (1.02) 7.0 (0.91)

Table 1: Means with standard deviations in parentheses for

the three dimensions (Novelty, Feasibility, Value) across the

two conditions (Baseline, BioSpark).

We analyzed overall scores using a linear mixed-effects model
to take into account potential participant-specific effects of our
within-study design. An initial model compared the control and ex-
perimental conditions (i.e., Baseline vs. BioSpark) with participant
as a random effect, using the Residual Maximum Likelihood (REML)
method for fitting model parameters [52]. We found that while the
residuals were normally distributed (through a visual examination
of the Q-Q plot of residuals showing good alignment to the line of
estimation and the complementing result of the Shapiro-Wilk test
showing residuals not significantly deviating from normal distribu-
tion, 𝑝 = .06), the homoscedasticity assumption was likely violated

https://www.upwork.com/
https://rb.gy/rvz17u
https://rb.gy/t3se2z
https://rb.gy/xvogjb
https://rb.gy/9apgoq
https://rb.gy/r7o2c8
https://chat.openai.com/
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from the results of both Breusch-Pagan and White’s tests (𝑝 < .001
in both cases). We thus modified the model to use a covariance
estimator adjusting for variance heteroscedasticity and residual
correlation, and find that this final model showed a good fit to the
data (𝐹 = 802.87, 𝑝 < .001) overall, with an 𝑅2 = .58 indicating that
approximately 58% of the total variability in scores was explained
by the model.

Coef. Std. Err. 𝑡 𝑃 > |𝑡 | [0.025 0.975]

Const. 4.4802 0.102 44.105 0.000 4.280 4.681
Cond. 2.0396 0.126 16.221 0.000 1.792 2.288

Figure 4: Regression results show that the estimated over-

all quality for the baseline condition is 4.48 and 4.48 + 2.04

= 6.52 for the BioSpark condition. The effect of condition

was significant, 𝑡 = 16.22, 𝑝 < .0001, suggesting a substantial

difference between the baseline and the BioSpark condition.

Figure 5: The number of participants’ ideas during the exper-

iment.

Results showed that the overall creative quality estimate was
significantly higher in BioSpark (M=6.5, Standard Error=.16, 𝑡 =
66.62, 𝑝 < .001) than in the Baseline condition (M=4.5, Standard
Error=.10, 𝑡 = 28.34, 𝑝 < .001) (Table 4). Representative ideas from
each condition are shown in Table 9 to illustrate how high vs. low
quality ideas differed for each design problem. High quality ideas
included several examples of analogical transfer, as shown in an
idea inspired from tree frogs’ adhesive toe pads to harness the
rear surface of the vehicle itself for securing bikes (Top 5th idea in
BioSpark) or an idea inspired from sea anemones’ burrowing to
construct a contracting and expanding wheelchair base (Top 50th
idea in BioSpark).

Interestingly, there was no evidence of a trade-off of idea quality
with idea quantity, with BioSpark users generating nearly twice the
number of ideas (M=10.3, SD=8.46) than in the baseline condition
(M=5.5, SD=2.91), which a paired two-tailed t-test suggests was a
significant difference (𝑡paired(13.56)=-2.35, 𝑝=.04) (fig. 5). Generating
more ideas, particularly diverse ones, is itself a design goal for
many designers; thus, the significant increase in the number of
ideas in combination with the large increases in the novelty and
value dimensions suggests a promising direction.

In summary, from several converging angles our results sug-
gest that BioSpark led to participants generating more and higher
quality ideas than in the baseline condition. Participants’ own per-
ceptions of the value of the system appeared consistent with this,

with participants’ agreement with the statement ‘Using this system
would improve my task performance’ was significantly higher in
the BioSpark condition (M=6.5, SD=.80, ) than in
the baseline condition (M=5.3, SD=1.07, ) (Wilcoxon
𝑊 =2.0, 𝑝=.02).

6.2 Diversity

Another of our design goals was to not only help users engage
with inspirations, but for those inspirations to be diverse and help
them explore new design spaces they might not have thought of on
their own. The previous analysis on quality is consistent with the
hypothesis that participants’ increased novelty in idea generation
may have been based on encountering more diverse inspirations;
in this section we investigate the role of diversity more directly.

In the context of bio-inspired design, one measure of diversity
in design space exploration is how many different species in nature
participants are engaging with for ideation, which has potential
for not only inspiring ideas based on a specific mechanism of the
particular species but also opening up a new space of design that
encompasses other mechanisms of the species or its related species.
To quantify the number of unique species mentioned by a partici-
pant we extracted the inspiring species’ names using gpt-4-turbo
-preview with a prompt (Appendix C.5). A paired two-tailed t-test
revealed that the number of unique species used for inspiration
was significantly higher (nearly double) in the BioSpark condi-
tion (M=8.2, SD=4.97) than the baseline condition (M=4.6, SD=2.71)
(𝑡paired(17.02)=-3.30, 𝑝=.007). Although it is difficult to directly quan-
tify the effects of using more species, a plausible hypothesis is that
using more species provided a greater number of mechanisms for
participants to leverage in solving the design problems, resulting
in both more ideas as well as those ideas being higher value and
more novel as described in the section on quality.

The interview, survey, and observation data support a deeper
but consistent understanding of which aspects of the BioSpark
design and interactive features most contributed to broadening
participants’ exploration of design spaces. Participants felt that the
AI features in BioSpark helped them be more creative. As will be
described in the Feature Use (§6.3.3) section below, participants
viewed the ‘spark’ generation feature as usefully nudging them to
reframe the problem (P6), creatively adapt and translate the source
mechanism inspirations into the target domain (P12), beyond just
providing useful inspirations or ideas (P1, P7). Consistent with
these statements, participants’ agreement with the statement ‘I was
able to examine a variety of inspirations’ was significantly higher
in the BioSpark condition (M=6.6, SD=.67, ) than
the baseline condition (M=5.4, SD=1.62, ) (Wilcoxon
𝑊 =0.0, 𝑝=.03).

In contrast, the baseline condition felt less dynamic and led to
less exploration by participants. For example, while P4 thought
the functional category-based organization in AskNature helped
his navigation, it also somewhat fixed the broader design space
he explored in, as he felt like “got stuck somewhere a little bit be-

cause I came up with this sideways top-mount bike rack idea early

on from the ‘manage turbulence’ concept” (P4). He also thought it
was easier to see the relevance of mechanisms in BioSpark and
follow-up with more exploration. However, it is possible that such
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Rank Cond. Prob. Score An-Tr? Idea (Summarized)
Top BioSpark 2 7.86 Y This bike rack uses a bio-mimetic springmechanism, inspired fromAnura’s

powerful legs, to stretch (and compress) to accommodate different bike sizes.
Its skeletal structure, mimicking frog bones, flexes to absorb road vibrations,
protecting bikes. Aerodynamically shaped to reduce drag, it ‘leaps’ into a com-
pact form when not in use, preserving fuel efficiency.

Bottom BioSpark 1 3.98 Y Retractable ‘legs’; Jointed segments that extend and contract to climb.

Top Baseline 2 6.80 Y Aerodynamically shaped bikerack design inspired by howmarine mam-

mals like dolphins and whales have evolved flippers and tail fins that op-
timize their movement in water. Their body shape tends to be more rounded
than that of fish but is streamlined for efficient travel. The tail fins (flukes)
provide powerful propulsion, while the pectoral flippers are used for steering
and stabilization.

Bottom Baseline 1 2.62 N Golden bamboo for durability and lightweight design.
Table 2: Top-1 and Bottom-1 scoring ideas from each condition, and whether they perform analogical transfer. ‘Cond.’ represents

the condition in which the idea was produced; ‘Prob.’ represents the problem the idea is for (1: the ‘wheelchair’ problem; 2: the

‘bike rack’ problem); ‘Score’ represents the geometric mean of expert-judged novelty, value, and feasibility scores; ‘An-Tr?’ is a

binary value representing the presence of Analogical Transfer; The Bottom-1 idea is summarized for conciseness. Boldfaced

text in the idea description represents the source and the target in analogical transfer. Full table in Table 9 (Appendix C.3).

structured organization could be profitably combined with a more
dynamic system, as described by P9 that he is “not as interested as
working from the “bottom up” for research, and would instead like to

have AI help brainstorm from the “top down”” (such as through the
functional organization in AskNature).

6.3 Feature use

The above analyses suggest that the design choices made in
BioSpark led to higher quality ideas, more ideas, and consider-
ation of a more diverse inspiration space. In this section we aim
to investigate which features were used by participants and their
perceptions in order to better understand the results above and to
unpack which design choices were more successful than others. In
the below sections we characterize through think-aloud, usage, and
survey data participants’ experience with various system features.

6.3.1 The Stream Interface. The stream interface design of
BioSpark was aimed at providing a scratchpad and organization
space for thought, aiming to help users triage and interact with AI
support. The stream was perceived as helpful for participants dur-
ing ideation and it was the highest-scoring system design feature
in BioSpark (M=6.3, SD=.98; Table 3). On its value, P1 said:

“I liked these because they kept my thoughts and all the informa-

tion very organized. It allowed me to focus on the actual text vs

focusing on the organization of everything. It would have been

even more helpful though if there was a way to enable bullet points

or formatting tools within these. I would have used bold or italics

for example.”

P4 noted that “It’s great to see all the ideas in one place. It provided a

nice anchor to go back to. It’s also a nice touch to have a trash bin so

that I can go back and check the ideas I discarded earlier.” and P5 said
the design was helpful for “note-taking and brainstorming through

relevant results and queries”.
Participants also commented on how the design and presenta-

tion of information in BioSpark streamlined their exploration and
helped them accomplish the task. P10 described it as: “I like that it’s

integrated into one space. I can press a button to get to the particular

need that I had.”, and P7 mentioned that “[the stream organization

of information] helped me to compare and contrast” while P10 com-
mented “[the stream was] definitely helpful. [It] allowed me to narrow

down best options.”.
These comments are consistent with participants’ agreement

with the statement ‘I could easily explore many inspirations without

getting lost’ (M=6.3, SD=.89 in BioSpark, , M=5.2,
SD=1.80 in baseline, , Wilcoxon𝑊 =2.0, 𝑝=.05).

6.3.2 Mechanism Clusters. Next, we investigate how active ingre-
dient clustering, designed to help improve participants’ recognition
and efficiency of scanning diverse mechanism inspirations might
have helped. Several participants mentioned clustering as helpful
for focus, navigation, and comparison, as it “helped to categorize the
needs/constraint which I am focusing on & pick the one which align

well with my end goal.” (P6); “navigating the problems and finding

solutions to associated animals and their unique features” (P8), and
“giving me information to help drive a decision and look at alternative

options.” (P5).
The clustering structure appeared to be a functional entry point

for exploration even for those who did not paid a lot of attention to:
“I found myself not exactly focusing on the “clustering” per say, but I

did focus on the specific mechanisms that seemed could be a good way

to enhance design features.” (P1). However, participants appeared
to use the drill-down functionality into clusters less, either not
attending to the species that would show up when drilling down
into a particular cluster or even being unaware that the drill-down
existed: “I didn’t look into the other species within the clustering so

much as the responses from the AI” (P11); “didn’t use it, was busy
using other tools” (P2); “I actually didn’t notice the clustering” (P3).

6.3.3 Sparks. The ‘Spark’ button was the highest-used feature
among the active features, at 6.2 times (SD=3.90), and was generally
perceived as useful (M=5.9, SD=1.08). P1 described its value as:
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Feature Name Usage Freq. (M, SD) Usefulness (M ↓, SD)
Stream N/A 6.3 (SD=0.98)
Spark 6.2 (SD=3.90) 5.9 (SD=1.08)
Q&A 2.3 (SD=1.97) 5.8 (SD=1.19)
Trade-off 1.3 (SD=1.66) 5.2 (SD=0.94)
Clustering N/A 4.1 (SD=1.44)

Table 3: Usage and usefulness ratings for BioSpark active features, measured on a 7-point Likert scale (higher is better).

“The “Sparks” button provided me with a lot of interesting insights

and got me thinking in directions I may not have thought of on

my own. It spurred my creative thought.”

Other participants mentioned that sparks “provided more inspira-

tion/ideas” (P7), “helped me with better viewpoint and perception

which I normally wouldn’t think of” (P6), “makes me think of a new

design space” (P12), and “gave me inspirations on how I could trans-

late the idea into design criteria and functions I want to achieve” (P12).
The ‘Spark’ button was also often used in combination with the
Q&A feature, which provided users opportunities to follow-up on
initial sparks to more deeply understand and further develop them
(see Table 4 for different query intent users submitted in the ‘Q&A’
text box).

Reflecting these observations, We find a marginally significant
difference in the agreement levels with the statement: ‘The sys-
tem enabled me to make connections between different inspirations’
showed a marginal difference between BioSpark (M=6.5, SD=.80,

) and Baseline (M=5.6, SD=1.56, ),
(Wilcoxon𝑊 =1.5, 𝑝=.07).

6.3.4 Trade-offs. Participants found the trade-off cards generally
useful (M=5.2, SD=.94) and mentioned how it helped them to pri-
oritize and triage ideas for further consideration. As P6 said: “It
very much helped me to decide which feature/constraint I am willing

to give up or trade off. It showed me valid reasons to pick the side

correctly.” (P6). In this vein P10 also mentioned “It was good to see

the pro and cons of a concept to see which were stronger to follow up

with.” (P10).
Interestingly, several participants mentioned they noted the cons

in the pros/cons analysis as more important than the pros list. P11
and P12 described the reason as: “I tend to look at cons first and it
directs and warns me what are the constraints I’ll be working with”

(P12); “This Pros and cons is helpful, to look at the weight concerns.
When I look at pros and cons usually I go straight to the cons, the

reason, is personally I focus on bad things first.” (P11).
However, there were also limitations of the trade-off analysis,

namely how the dimensions of comparison was not readily con-
figurable by the user, which sometimes led to useful aspects of
comparison but other times not. On this point, P1 described: “I used
it for moreso looking for cons of the mechanism that could act as

barriers for the design itself, but the button provided me insights that

were moreso focused on the cons being related to business expenditure

and manufacturing.” (P1). P4 mentioned having to save ideas that
use different materials and click the trade-off button on each even
when he wanted a direct comparison on the material and manufac-
turing cost aspects across multiple ideas: “interesting, but it would
be more helpful if I could ask about the pros and cons of a material

or mechanism ” (P4). Similarly, P5 said that “I want it to be able to

compare this spark and this other spark in terms of strengths and

weaknesses” (P5).

6.3.5 Q&A cards. The Q&A cards introduced in BioSpark aimed
to help flexible user interaction with interesting mechanism inspira-
tions, such as elaborating on relevant aspects of the design problem
or gaining a deeper understanding of mechanism inspirations they
want to build on. Participants thought the ‘Q&A’ feature generally
useful (M=5.8, SD=1.19) and mentioned that it “helped clarify the

details of the general overview of the idea” (P3), and that “I could
ask some very specific questions about very specific mechanisms such

as finding a fabricated material that is comparable to chitin, and

get a useful reply” (P4). P6 also commented how the AI assistance
“allowed for interactive sessions to implement my ideas along” (P6).

The intent of user queries within the Q&A interaction seemed to
have varied, characterized as the following four types (Table 4): 1)
(Understanding) to more deeply understand design ideas’ working
and relevant physics, 2) (Adaptation) to creatively adapt the ideas
into new directions, 3) (Constraints) to probe how they would
meet certain constraints to become value, and 4) (Material) to
engage in material selection and engineering feasibility. In our ob-
servations, participants seemed to often engage in an initial deeper
understanding of an interesting design inspiration (Understand-
ing), followed by adapting them further by generating adaptation
ideas (Adaptation), and increasing their value by considering how
various design constraints would be addressed (Constraints) and
how engineering and manufacturing feasibility might be enhanced
(Material). Table 4 shows representative user queries of each type.

6.4 Engagement beyond Inspiration

One of the main goals of BioSpark was to support users beyond
finding inspirations, to helping users notice the relevance of, trans-
fer, consider tradeoffs, and elaborate on inspiration mechanisms in
the domain of the target design problem. Engagement is particu-
larly relevant to analogical inspirations that may require significant
cognitive effort for valuable transfer to occur [23, 27]. We explore
this research question using the interaction log data as well as
transcribed participants’ think aloud data.

6.4.1 Interaction Log Data Analysis Results. Participants in the
BioSpark condition demonstrated active engagement with the in-
spiration mechanisms. On average, they generated 18.8 sparks (SD
= 14.28), wrote 1.0 ideas from scratch (SD = 1.15), and deleted 9.4
sparks (47%; SD = 8.74) after evaluating their relevance or lack
thereof.

Furthermore, as detailed in §6.3, participants found the Q&A
feature useful, engaging with it an average of 2.3 times (SD=1.97)
to adapt inspiration mechanisms and enhance their understanding.
Their range of queries and intent is summarized in Table 4. These
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Intent Sample Q&A Query

Understanding “How would this be able to collapse the frame itself, not just for the bikes while on the rack?”

“Tell me more about how this design ensures minimal air resistance, maintaining fuel efficiency.”

Adaptation “How to modify this in a mobile space?”

“is there a way to install modular adapters? ”

Material
“Material wise what are some of the examples that could withstand a similar force but in a large scale?”

“What kind of materials would I need to make this hydrophobic?”

Constraints “How does a user without functioning limbs use this wheelchair?”

“Can this bike rack safely restrain e-bikes?”

Table 4: Intents and Corresponding User Queries

findings collectively suggest that participants actively engaged with
BioSpark-generated sparks, leveraging them to notice relevance,
transfer ideas, and elaborate on inspiration mechanisms.

6.4.2 Think-aloud data analysis results. To explore the research
question further we analyzed a subset of the transcribed partic-
ipants’ think-aloud along with their behavior descriptions. The
research team met to discuss coding of interview and think-aloud
data from the study, with one salient feature of the data being that
participants seemed to engage with mechanism inspirations dif-
ferently in depth, for example with or without follow-up actions
that related to attempting to deepen their understanding of the
inspirations, of their relevance to the design problem and of trade-
offs regarding different design constraints, and attempting to come
up with new ideas that could adapt the inspirations to a design
problem in new ways.

In order to characterize these differences the first two authors
developed four codes for participants’ different engagement pat-
terns corresponding to two common types of shallow engagement
and two common types of deeper engagement:

[S1: “Interesting!”]: Positive comments on a mechanism inspi-
ration, but directly followed by moving on to a different
mechanism that was visible to the participant.

[S2: “I’m not sure how this might be relevant”]: Negative com-
ments on a mechanism inspiration, but similarly followed
by moving on to a different mechanism that was visible to
the participant.

[D1: Engaging with relevance understanding and constraints con-

sideration]: Engagement with AI to understand a mechanism
inspiration’s relevance to the design problem, for example
by asking the following types of questions “tell me examples

of...” or “how might this be used/applied...”
[D2: Actively coming up with new ideas]: Exploring the design

space and actively generating new ideas “it made me think

of...”

One author transcribed the interview and think-aloud data from
the study, and incorporated descriptions of participants’ actions
with each platform (e.g., what the participant is typing in the Chat-
GPT interface or what the participant is clicking in BioSpark),
that participants’ think-aloud did not describe but were relevant
to understanding their engagement process and intent. This re-
sulted in 266 transcripts across 12 participants. Coders coded a set
of randomly selected 16 transcripts together blind to condition and

Figure 6: (Left) The bar graph shows that the average number

of deep engagement was significantly higher in BioSpark

than inBaseline.; (Right) The bar graph shows that therewere

equally many shallow engagement types in both conditions.

built consensus through discussion. They then coded 30 additional
randomly selected transcripts independently. The inter-rater agree-
ment of codes for this set showed a moderate to strong level of
agreement 𝜅 = 0.76. Thus, the first author coded the remaining 218
transcripts alone. Table 5 shows representative cases and how they
map to the four codes of engagement patterns.

To determine whether there was a difference between the fre-
quencies of the two types of codes and conditions we conducted a
𝜒2 test, finding a significant distributional difference (𝜒2 (1)=12.93,
𝑝=.0003). Follow up pairwise comparisons after Bonferroni correc-
tion showed a significantly higher frequency of deep engagement
in BioSpark (M=7.2, SD=4.04) over the baseline condition (M=3.0,
SD=3.30) (𝑡paired(21.16)=-3.12, 𝑝=.01, fig. 6, left). These results sug-
gest that BioSpark promoted greater follow-up and idea generation
than the baseline; we explore the usage of features that may have
contributed to this difference further below.

No significant difference was found in the frequency of shal-
low engagement between conditions (Baseline: M=6.3, SD=3.28;
BioSpark: M=5.8, SD=3.60, 𝑡paired(21.81)=.34, 𝑝=.74, fig. 6, right),
suggesting that participants in both conditions encountered in-
spirations that they did not prioritize for follow up. However, we
found that positive utterances for shallow engagement (S1, e.g.,
“Interesting!”) were significantly higher compared to negative ut-
terances (S2, e.g., “I don’t see the relevance.”) in the BioSpark con-
dition (M=3.1, SD=3.92) compared to the baseline condition (M=-.3,
SD=4.16) (𝑡paired(21.92)=-2.25, 𝑝=.046). Thus is it possible that even
though they did not follow up on them, participants may have en-
countered even more inspirations of possible interest in BioSpark,
making the findings of engagement above conservative estimates.
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PID Active Ingredi-

ent Inspiration

Species Code Participants’ Think-aloud & Related Behavior Descriptions

P1 Shape allows air
to flow over and
around like a sail

Caryophyllales
(seed)

S1 “Okay. WindSail carrier. Oh that’s pretty cool! Inspired by the aerodynamically shaped seeds of

Caryophyllales, this bike rack utilizes a lightweight, sail-like structure that harnesses airflow to reduce

drag...”

D1 “The sails are adjustable to snugly fit bikes, mimicking the efficiency of seed dispersal by wind...

What does it mean by a sail” (Asks BioSpark a question to explain how ‘sail’ would work in

the idea) “That’s a lot of information... Aerodynamic Shape. The sail-like structure of the WindSail

Carrier is not just for aesthetic appeal; it serves a functional purpose by mimicking the shape of

aerodynamically efficient seeds. The shape allows air to flow over and around the bike rack...
Oh okay now we’re getting something.”

P4 Appendages
retract into an
empty space

Turtle D2 “Okay, so, the tortoise shell made me think about how things can be folded into empty space. That

was the thing I got from the tortoise. There’s empty space inside the shell and it can fold like it can

take its feet into the shell. But it doesn’t break the feet into simple pieces, or fold it like, roll it like, or

anything like that. Just takes the feed into empty shell. So that’s what I came up with, and then I

started thinking about like, oh what does it mean to have a slot inside, and then I thought, airplane

wheels, and the Alaska airline door incident, which made me think about the pin-release mechanism

(that was supposed to hold the door).”

P6 Small, power-
ful thrusts for
quick, upward
propulsion and di-
rectional changes

Lepidoptera
(butterflies
and moths)

S1 “Okay that’s pretty interesting, the propulsion (mechanism) and changing directions... that could

be relevant to changing directions on wide stairs.”

N/A N/A S2 “okay so since I don’t know these concepts from nature, I need help in understanding whether I
can use that technology in this? So it’s hard to understand the relevance.”

P11 Sliding and col-
lapsing (like in a
telescope)

Armadillo D2 “Okay this shell that can collapse is an interesting mechanism. Like this makes me think of a
telescope, like a telescoping mechanism for sliding and collapsing... so that could be a really
interesting design space.”

Table 5: Transcripts of participants’ think aloud and behavioral records in the BioSpark condition (‘Participants’ Think-aloud

& Related Behavior Descriptions’) and how they were coded into different types of engagement patterns (‘Code’). The bold-faced

text in each row highlights the important signatures of the assigned code. Each row also contains the following: the participant

ID (‘PID’), the active ingredient description that participants found interesting / relevant (‘Active Ingredient Inspiration’),

and the associated species (‘Species’). Exhibits in the baseline condition were similar, with the exception of tools participants

interacted with.

6.4.3 Design constraint mentions. We also explored how often
participants mentioned design constraints mentioned in the brief,
which are requirements to be considered for the idea to be useful
(e.g., being lightweight but durable, or versatile in accommodating
different shapes).

Although we do not have direct measures for howwell these con-
straints were addressed beyond the quality ratings discussed above,
an indirect measure we explored was the number of times design
constraints were mentioned in participants’ ideas. We performed
a two-tailed, independent samples t-test over ideas grouped by
condition, finding that participants’ ideas were significantly longer
in the BioSpark condition (M=375.5, SD=96.15) over the baseline
condition (M=141.9, SD=108.93, 𝑡ind.(119.25)=-14.65, 𝑝<.0001). How-
ever, length alone may not represent how many different design
constraints participants mention. To examine constraint-specific
content we extracted unique chunks from each idea description
that corresponded to each design constraint using the gpt-4-turb
o-preview model, which showed satisfactory performance (details

in Appendix C.4). From this we find that BioSpark users men-
tion a significantly higher number of design constraints in their
ideas (M=2.7, SD=1.01) than the baseline condition (M=1.6, SD=.78;
𝑡ind.(163.27)=-8.45, 𝑝< .0001), suggesting they may have considered
design constraints more in their process.

6.5 Challenges

Controllability around what problem constraints are empha-

sized, and by how much. In some occasions participants felt the
AI’s response was re-coursing to make connections to the original
problem constraints, which seemed forced and adding less value
“it’s still trying to navigate the conversation towards the original topic

and doesn’t seem to be “progressive” enough to talk more in depth

with specific areas” (P12). Similarly, P10 also said: “I think the AI is
trying too hard here to make the connections. I’m more interested in

the function of a climbing wheelchair, and want to focus on that first

rather than the weight and foldability which are secondary challenges

to me”. However, sometimes this might potentially have a beneficial
problem-reframing effect and serve as an entry into a new design
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space to explore: “I don’t think these really addressed my questions

exactly, but maybe [adapters] is what I’m looking for” (P5).
Supporting deeper idea development. Participants also wished
to have more support around developing ideas further with relevant
technical specifications. P10 said: “I’m interested in going deeper in

the technical specs. I’ve read the brainstormed idea description, and

now I want to build more confidence in it.” (P10). P5 wanted a way to
easily “extract interesting parts from an earlier information card and

integrate them directly into the next sparks”, while also being able
to “ask additional follow-up questions based on the previous Q&A

responses, without overcrowding the stream space” (P5).
Some participants wanted additional support for “comparing and

contrasting” (P7) the ideas, to “easily highlight the strengths of each

design and extract useful design features from it for integration into

a new idea for mitigating anticipated challenges” (P5), beyond the
current single-idea-focused trade-offs analysis. Participants wished
an easier way to organize the pros-and-cons table for multiple
material candidates and comparison: “It would be great to be able to
specifically consider different variations / combinations of different

materials, titanium for the base and fiberglass for the body or cover”

(P12), and have a way to perform an estimated quality analysis by
swapping some features of an idea with those from other ideas or
candidate materials: “How can I apply this to the cover portion of the

bike-rack and what would happen if I replaced this with this other

material?” (P6).
Idea organization and information space efficiency. With
many sparks and information cards generated, participants wanted
a better mechanism for crowd and space management. Participants
engaged in grooming the space as desired (e.g., “I’ll eliminate some

of the ideas so that I don’t get overwhelmed” – P10; “I don’t have a lot
of space over here, a bit frustrating to me” – P11), and in making the
ideas being actively pursued more easily accessible by prioritizing
and ranking ideas: “Is there a way to bookmark some things (beyond

the save-the-mechanism feature)? I think when you’re researching

multiple ideas, it would be useful to easily narrow down to a few inter-

esting things for further consideration” (P5). Participants also wished
to have a way to perform this prioritization via “comparisons of this

spark and this other spark in terms of strengths and weaknesses” (P7).
Other challenges. Some participants noted the potential value of
being able to switch between retrieval- vs. generation-based modes
of getting the information cards. For example, P11 commented that
“(The baseline) is more intuitive for me because I can always switch

between different tabs and ask questions to AI if I have to, or instead

Google something, and not always invoke AI automatically” (P11).
Related to this, P10 commented that he wanted to “understand

what the source is when new ideas are generated” (P10), suggesting
further exploration is needed to understand how knowing which
information sources contributed to the card content affects the
perception of trust, which may become more important for further
idea development and could be useful for related customization.

Moreover, participants commented on wanting to instruct the
output structure as desired related to more or less details or con-
ciseness, or more or less structure for skimming. P10 said, “I also
would like bullet points as opposed to long text or paragraphs for

scannable and easier comparisons” (P10). Similarly P11 commented
that he would “like (the cards) to be as concise as possible... surfacing

the design objectives over complete sentences, along specific criteria

or ingredients – these are the features and important stuff” (P11).
Together, these challenges point to limitations of the interaction

paradigm proposed in BioSpark, and fruitful areas for future re-
search around personalizing and improving the controllability in
LLM-augmented analogical transfer.

7 DISCUSSION

We introduced BioSpark, a system exploring the idea of acting as
a creativity partner in analogical innovation. BioSpark builds on
insights from a design workshop and formative pilot study to sup-
port not only finding inspirations but also transferring inspirations
into the target design domain and more deeply engaging with them
during ideation. We found in a user study that the LLM-enabled
features we explored in BioSpark – generating and clustering in-
spirations, introducing sparks to help map the inspiration to the
design problem, trade-offs to help users consider design constraints,
and free-form chat to explore inspirations more deeply – resulted
in participants generating more ideas and exploring more different
species without a significant decrease in diversity compared to a
‘gold standard’ condition using AskNature inspirations and Chat-
GPT. Furthermore, BioSpark appeared to keep users in the flow of
ideation, reduce the cognitive effort in transferring and adapting
ideas, and help people engage more deeply in considering how they
could use inspirations and the design spaces they unlocked.

One significant concern we had was that the features that
were aimed at deeper engagement, such as sparks, might counter-
productively decrease engagement and increase fixation because of
how fleshed out the connections were in terms of articulating an
entire, detailed design idea embodying the inspiration’s mechanism
in the target domain (e.g., using spider silk for lifting a wheelchair
or creating a ramp). The higher the fidelity of an inspiration the
more it may incur fixation and direct use rather than creative adap-
tation [65]. In our evaluation we cannot definitively reject this
possibility. While our analysis of interaction logs and think-aloud
transcripts suggests that participants actively engaged with the
mechanism inspirations – recognizing their relevance, deepening
their understanding, and transferring them to the target design
domain – further investigation is required to unpack the effects of
AI-enabled content generation features, such as the spark, trade-off,
and Q&A cards, on the idea generation process.

With this caveat, we highlight some factors that may warrent
future research. First, although the AI appeared to reduce the cog-
nitive load of mapping the idea to the design space, the decision
to do the mapping in the first place was user-driven, prompted
by them saving an inspiration. Thus before seeing the AI map-
ping they needed to notice something interesting or relevant about
the inspiration, even if they didn’t fully make the connection be-
tween it and the problem domain. This self-driven curiosity and
agency may influence how users engage with sparks and trade-off
cards. Future systems could explore which user actions and levels
of agency are necessary to foster a sense of ownership and spur
initial engagement with inspirations.

Another factor that might have driven engagement was per-
ceived ownership of inspirations. Previous work has identified that
ownership and attribution are key elements of human-AI collabora-
tion [57]. In our study we noticed participants making attribution
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statements about the sparks, such as ““That’s not really my idea,

[it’s] ChatGPT’s idea but okay””. A common theme among partici-
pants was discussing how they modified the sparks to make ideas
more their own and to avoid “plagiarism”, even though they were
told they could use the sparks as they wish. It’s unclear why design-
ers in other studies finding fixation when using LLM and generative
AI did not similarly adapt and riff on ideas in order to build owner-
ship, but a possibility that might be explored is that an integrated
system that frames AI-generated ideas as intermediate products, as
we do in BioSpark, might be more effective at promoting deeper
engagement than an unstructured system or one where they claim
prominence as more final products.
Fixation vs. Contextualization. Another concern we had in our
system design was whether contextualizing the system interface
features in the design problem would lead to narrowing of the
design ideas users would explore. Sparks, trade-off cards, and the
free-form chat interface were all contextualized with the source de-
sign problem, with the goal of reducing the cognitive effort needed
for users to engage with the details of the inspirations relevant to
their goals.

This largely appeared to hold true, with users finding the contex-
tualization useful, and even sometimes “magical”. While they were
technically able to do this with the baseline system and sometimes
did (“It feels like I got the seed like the very starting point idea from

AskNature and then generating actual ideas from it was done by

ChatGPT, like translating the seed into actual ideas.” ), the efficiency
of the built-in contextualization was frequently mentioned as useful
as a jumping off point rather than replacing cognitive work (e.g., “it
was able to produce things without me having to like prompt it. And

I think that allowed me to spend more time, maybe thinking about

specific connections between the mechanisms and the design features

it was suggesting.” ). Participants also commented on the reduction
of cognitive effort in transferring inspirations, as P1 described: “I
just felt like it was able to produce things without me having to like

prompt it. And I think that allowed me to spend more time, maybe

thinking about specific connections between the mechanisms and the

design features it was suggesting. Whereas... with [ChatGPT] I felt

like I had to spend more time like doing to allow it to actually help,

but with [BioSpark] I felt like the AI system already knew what I

needed, so it saved that step.”. P5 felt it was “easy to highlight the

strengths of each design and extract useful design features from it for

integration into a new idea for mitigating anticipated challenges”,
and that “(The sparks are) very specific... how did it know? How are

these so specific to bike rack design? Wait, it’s already pitching me

different ideas. That’s so cool” (P5).
In contrast, the baseline system seemed to result in significant

cognitive effort, both physically not having the context of the de-
sign problem, and attentionally in not keeping them focused. For
example, P12 commented that “This [AskNature.org] article could be
tailored more to the bike rack design, instead it’s about stuff that’s

in motion... so it’s hard to know what the relevance is” (P12). With-
out the persistent context, and source inspirations on AskNature
disconnected from the target design problem, participants felt the
inspirations in the baseline “didn’t tell me about too much in terms

of what insights I can draw to support (the scenario described by the

design brief)” (P1) and that they had to engage in multiple back-and-
forth’s with ChatGPT to glean transferrable insights and ideating
specific design ideas based on them, which was time-consuming
without the persistent context and consistent user guidance: “(Types
in ChatGPT) it’s giving me specific animals (instead of transferrable

mechanisms) so I’m going to pause the generation. Let me see... (Types

in ChatGPT) ‘what shape?’. Oops that didn’t work, let me try again.

‘What shape that could be useful for industrial design?”’ (P12). For
P4, AskNature.org felt “like a generic platform” and that building
off of its material using AI felt like “asking just random questions to

ChatGPT, while in BioSpark I was asking related questions” (P4).
Overall, our results suggest a more nuanced consideration of

context and fixation than previously considered, in which helping
users reduce cognitive load throughout the analogical innovation
process while positioning AI suggestions as intermediate products
in the system flow, could represent a profitable paradigm to explore.
Limitations. Our findings and analysis have several limitations.
First, our access to professional designers working in large organi-
zations was limited to a design workshop. Our formative study and
user studies involved heterogeneous participant pools, including
freelance designers recruited from UpWork and design and PhD
students recruited from an arts college. These participants may not
fully represent the broader population of design professionals.

Second, alternative interpretations of our data are possible based
on the operationalization of the measures we used. Creativity and
ideation measurement spans multiple disciplines, and our chosen
metrics – focused on engagement with inspirations, as well as the
quality, quantity, and diversity of ideas – reflect a specific subset
of this research. Notably, our approach to measuring idea diver-
sity, such as extracting species’ names from ideas or relying on
a particular LLM in our computational pipeline, may introduce
biases.

Additionally, our study protocol, while informed by professional
design practices, involved artificial scenarios and time constraints
that may not mirror real-world design contexts. The self-driven
curiosity and agency observed in participants’ engagement with
AI-generated inspirations may differ in professional settings, where
constraints and priorities vary. Future studies embedding such
systems into designers’ ongoing work or making them publicly
available for broader use could yield valuable insights into practical
benefits and remaining challenges.

Our evaluation suggests that while the system reduces cognitive
load during the analogical ideation process, the decision to map
inspirations to the design space remains user-driven, requiring par-
ticipants to identify relevant or interesting aspects of inspirations.
The interplay between AI support and user agency as well as their
effects on design fixation warrants further exploration to better
understand the balance between automation and human creativity
in fostering meaningful and innovative design processes.

Finally, our work aims to support only the ideation portion of
the design process, while a significant part of the design process
also involves prototyping and evaluation. Further work is needed
to extend these results to incorporating later stages of the design
process.
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8 CONCLUSION

In this workwe presentBioSpark, a creativity partner for analogical
design. BioSpark proposes a new interaction paradigm for reducing
the cognitive effort in finding, recognizing, mapping, and creatively
adapting diverse inspirations from distant domains. Future work
remains in this area to generalize our diversification structure and
goal-driven inspiration discovery pipeline for generating analogical
inspirations from different domains, and in further personalizing,
controlling, and customizing support for user recognition and idea
development beyond what was explored here to accelerate and
materialize high-impact innovations. We imagine a future in which
engineers and designers could find inspirations based on deep ana-
logical similarity that move beyond domain boundaries to drive
innovation across fields.

ACKNOWLEDGMENTS

This research was supported by the Toyota Research Institute and
the Office of Naval Research.

REFERENCES

[1] [n. d.]. Ask Your PDF. https://askyourpdf.com/. Accessed: 2023-04-05.
[2] [n. d.]. Naked mole-rat. https://en.wikipedia.org/wiki/Naked_mole-rat. Accessed:

10-02-2023.
[3] Michael F Ashby and Kara Johnson. 2013. Materials and design: the art and science

of material selection in product design. Butterworth-Heinemann.
[4] Kevin D Ashley. 1991. Reasoning with cases and hypotheticals in HYPO. Inter-

national journal of man-machine studies 34, 6 (1991), 753–796.
[5] Tal August, Lucy Lu Wang, Jonathan Bragg, Marti A Hearst, Andrew Head, and

Kyle Lo. 2023. Paper plain: Making medical research papers approachable to
healthcare consumers with natural language processing. ACM Transactions on

Computer-Human Interaction 30, 5 (2023), 1–38.
[6] O. Bánki, Y. Roskov,M. Döring, G. Ower, D. R. Hernández Robles, C. A. Plata Corre-

dor, T. Stjernegaard Jeppesen, A. Örn, L. Vandepitte, D. Hobern, P. Schalk, R. E.
DeWalt, K. Ma, J. Miller, T. Orrell, R. Aalbu, J. Abbott, R. Adlard, E. M. Adri-
aenssens, and et al. 2023. Catalogue of Life Checklist. Catalogue of Life (14
September 2023). https://doi.org/10.48580/ddz4x

[7] Jaime G Carbonell. 1983. Learning by analogy: Formulating and generalizing
plans from past experience. In Machine learning. Springer, 137–161.

[8] Jaime Guillermo Carbonell. 1985. Derivational analogy: A theory of reconstructive

problem solving and expertise acquisition. Technical Report. CARNEGIE-MELLON
UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

[9] Amaresh Chakrabarti, Prabir Sarkar, B Leelavathamma, and BS Nataraju. 2005.
A functional representation for aiding biomimetic and artificial inspiration of
new ideas. Ai Edam 19, 2 (2005), 113–132.

[10] Joel Chan, Joseph Chee Chang, Tom Hope, Dafna Shahaf, and Aniket Kittur.
2018. SOLVENT: A Mixed Initiative System for Finding Analogies between
Research Papers. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 31 (Nov.
2018), 21 pages. https://doi.org/10.1145/3274300

[11] Hyunmin Cheong and L. H. Shu. 2014. Retrieving Causally Related Functions
FromNatural-Language Text for Biomimetic Design. Journal of Mechanical Design

136, 8 (02 Jun 2014), 081008–081008–10. https://doi.org/10.1115/1.4027494
[12] John Chung, Ece Kamar, and Saleema Amershi. 2023. Increasing Diversity While

Maintaining Accuracy: Text Data Generation with Large Language Models and
Human Interventions. In Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Association for Computa-
tional Linguistics, Toronto, Canada, 575–593. https://doi.org/10.18653/v1/2023.
acl-long.34

[13] Olivier Darrigol. 2010. The analogy between light and sound in the history of
optics from the Ancient Greeks to Isaac Newton. Part 1. Centaurus 52, 2 (2010),
117–155.

[14] Nicholas Davis, Chih-PIn Hsiao, Kunwar Yashraj Singh, Lisa Li, Sanat Moningi,
and Brian Magerko. 2015. Drawing apprentice: An enactive co-creative agent
for artistic collaboration. In Proceedings of the 2015 ACM SIGCHI Conference on

Creativity and Cognition. 185–186.
[15] Jon-Michael Deldin and Megan Schuknecht. 2013. The AskNature database:

enabling solutions in biomimetic design. In Biologically inspired design: computa-

tional methods and tools. Springer, 17–27.
[16] David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber,

Raphael Gontijo Lopes, Yuhuai Wu, Henryk Michalewski, Rif A Saurous,

Jascha Sohl-Dickstein, et al. 2022. Language model cascades. arXiv preprint

arXiv:2207.10342 (2022).
[17] Hen Emuna, Nadav Borenstein, Xin Qian, Hyeonsu Kang, Joel Chan, Aniket

Kittur, and Dafna Shahaf. 2024. Imitation of Life: A Search Engine for Biologically
Inspired Design. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 503–511.

[18] Encyclopedia. [n. d.]. Encyclopedia of Life (EOL). https://eol.org/docs/what-is-eol.
Accessed: 10-02-2023.

[19] Raymond Fok, Joseph Chee Chang, Tal August, Amy X Zhang, and Daniel S
Weld. 2023. Qlarify: Bridging scholarly abstracts and papers with recursively
expandable summaries. arXiv preprint arXiv:2310.07581 (2023).

[20] Kenneth Forbus. 2001. Exploring analogy in the large. MIT Press.
[21] Kenneth D Forbus, Ronald W Ferguson, and Dedre Gentner. 1994. Incremen-

tal structure-mapping. In Proceedings of the sixteenth annual conference of the

Cognitive Science Society. 313–318.
[22] Dedre Gentner. 1983. Structure-mapping: A theoretical framework for analogy.

Cognitive science 7, 2 (1983), 155–170.
[23] Dedre Gentner and Russell Landers. 1985. Analogical reminding: A good match

is hard to find. In Unknown Host Publication Title. IEEE, 607–613.
[24] Dedre Gentner, Mary Jo Rattermann, and Kenneth D Forbus. 1993. The roles

of similarity in transfer: Separating retrievability from inferential soundness.
Cognitive psychology 25, 4 (1993), 524–575.

[25] Katy Ilonka Gero, Vivian Liu, and Lydia Chilton. 2022. Sparks: Inspiration for
science writing using language models. In Proceedings of the 2022 ACM Designing

Interactive Systems Conference. 1002–1019.
[26] Mary L Gick and Keith J Holyoak. 1980. Analogical problem solving. Cognitive

psychology 12, 3 (1980), 306–355.
[27] Mary L Gick and Keith J Holyoak. 1983. Schema induction and analogical transfer.

Cognitive psychology 15, 1 (1983), 1–38.
[28] Ashok K Goel, Swaroop Vattam, Bryan Wiltgen, and Michael Helms. 2012. Cog-

nitive, collaborative, conceptual and creative—Four characteristics of the next
generation of knowledge-based CAD systems: A study in biologically inspired
design. Computer-Aided Design 44, 10 (2012), 879–900.

[29] Graeme S Halford, Rosemary Baker, Julie E McCredden, and John D Bain. 2005.
How many variables can humans process? Psychological science 16, 1 (2005),
70–76.

[30] Shirley Anugrah Hayati, Minhwa Lee, Dheeraj Rajagopal, and Dongyeop Kang.
2023. How Far Can We Extract Diverse Perspectives from Large Language
Models? Criteria-Based Diversity Prompting! arXiv preprint arXiv:2311.09799

(2023).
[31] Douglas R Hofstadter, Melanie Mitchell, et al. 1995. The copycat project: A model

of mental fluidity and analogy-making. Advances in connectionist and neural

computation theory 2 (1995), 205–267.
[32] Keith J Holyoak and Paul Thagard. 1989. Analogical mapping by constraint

satisfaction. Cognitive science 13, 3 (1989), 295–355.
[33] Tom Hope, Joel Chan, Aniket Kittur, and Dafna Shahaf. 2017. Accelerating

Innovation Through Analogy Mining. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (Halifax, NS,
Canada) (KDD ’17). ACM, New York, NY, USA, 235–243. https://doi.org/10.1145/
3097983.3098038

[34] Ting-Hao’Kenneth’ Huang, Chieh-Yang Huang, Chien-Kuang Cornelia Ding,
Yen-Chia Hsu, and C Lee Giles. 2020. Coda-19: Using a non-expert crowd to
annotate research aspects on 10,000+ abstracts in the covid-19 open research
dataset. arXiv preprint arXiv:2005.02367 (2020).

[35] John E Hummel and Keith J Holyoak. 2003. A symbolic-connectionist theory of
relational inference and generalization. Psychological review 110, 2 (2003), 220.

[36] Shuo Jiang, Jie Hu, Kristin L Wood, and Jianxi Luo. 2022. Data-driven design-by-
analogy: state-of-the-art and future directions. Journal of Mechanical Design 144,
2 (2022), 020801.

[37] Philip N Johnson-Laird. 2005. Flying bicycles: How the Wright brothers invented
the airplane. Mind & Society 4 (2005), 27–48.

[38] Hyeonsu B. Kang, Xin Qian, Tom Hope, Dafna Shahaf, Joel Chan, and Aniket
Kittur. 2022. Augmenting Scientific Creativity with an Analogical Search Engine.
ACM Trans. Comput.-Hum. Interact. 29, 6, Article 57 (nov 2022), 36 pages. https:
//doi.org/10.1145/3530013

[39] Hyeonsu B Kang, Tongshuang Wu, Joseph Chee Chang, and Aniket Kittur. 2023.
Synergi: A Mixed-Initiative System for Scholarly Synthesis and Sensemaking. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and

Technology (, San Francisco, CA, USA,) (UIST ’23). Association for Computing
Machinery, New York, NY, USA, Article 43, 19 pages. https://doi.org/10.1145/
3586183.3606759

[40] Youwen Kang, Zhida Sun, Sitong Wang, Zeyu Huang, Ziming Wu, and Xiao-
juan Ma. 2021. MetaMap: Supporting visual metaphor ideation through multi-
dimensional example-based exploration. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–15.

[41] Pegah Karimi, Jeba Rezwana, Safat Siddiqui, Mary Lou Maher, and Nasrin Dehbo-
zorgi. 2020. Creative sketching partner: an analysis of human-AI co-creativity.
In Proceedings of the 25th international conference on intelligent user interfaces.

https://askyourpdf.com/
https://en.wikipedia.org/wiki/Naked_mole-rat
https://doi.org/10.48580/ddz4x
https://doi.org/10.1145/3274300
https://doi.org/10.1115/1.4027494
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://eol.org/docs/what-is-eol
https://doi.org/10.1145/3097983.3098038
https://doi.org/10.1145/3097983.3098038
https://doi.org/10.1145/3530013
https://doi.org/10.1145/3530013
https://doi.org/10.1145/3586183.3606759
https://doi.org/10.1145/3586183.3606759


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kang et al.

221–230.
[42] Jingoog Kim and Mary Lou Maher. 2023. The effect of AI-based inspiration on

human design ideation. International Journal of Design Creativity and Innovation

11, 2 (2023), 81–98.
[43] Seo-young Lee, Matthew Law, and Guy Hoffman. 2024. When and How to Use

AI in the Design Process? Implications for Human-AI Design Collaboration.
International Journal of Human–Computer Interaction (2024), 1–16.

[44] Julie S Linsey, Arthur BMarkman, and Kristin LeeWood. 2012. Design by analogy:
A study of the WordTree method for problem re-representation. (2012).

[45] Michael Xieyang Liu, Tongshuang Wu, Tianying Chen, Franklin Mingzhe Li,
Aniket Kittur, and Brad A Myers. 2023. Selenite: Scaffolding Decision Making
with Comprehensive Overviews Elicited from Large Language Models. arXiv
preprint arXiv:2310.02161 (2023).

[46] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural

Information Processing Systems 36 (2024).
[47] LenaMamykina, Linda Candy, and Ernest Edmonds. 2002. Collaborative creativity.

Commun. ACM 45, 10 (2002), 96–99.
[48] Lori McCay-Peet and Elaine Toms. 2011. Measuring the dimensions of serendipity

in digital environments. Information Research: An International Electronic Journal

16, 3 (2011), n3.
[49] Microsoft Corporation. 2023. Microsoft Copilot: Your Everyday AI Companion.

https://copilot.microsoft.com. Accessed: 2023-04-05.
[50] Meg Monk. 2013. BYU engineers use origami to make more space in

space. https://universe.byu.edu/2013/12/12/byu-engineers-use-origami-to-
make-more-space-in-space/. Accessed: YYYY-MM-DD.

[51] Camilo Mora, Derek P Tittensor, Sina Adl, Alastair GB Simpson, and Boris Worm.
2011. How many species are there on Earth and in the ocean? PLoS biology 9, 8
(2011), e1001127.

[52] Melis Muradoglu, Joseph R Cimpian, and Andrei Cimpian. 2023. Mixed-effects
models for cognitive development researchers. Journal of Cognition and Develop-

ment 24, 3 (2023), 307–340.
[53] Xi Niu, Fakhri Abbas, Mary Lou Maher, and Kazjon Grace. 2018. Surprise me

if you can: Serendipity in health information. In Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems. 1–12.
[54] Changhoon Oh, Jungwoo Song, Jinhan Choi, Seonghyeon Kim, Sungwoo Lee, and

Bongwon Suh. 2018. I lead, you help but only with enough details: Understanding
user experience of co-creation with artificial intelligence. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems. 1–13.
[55] OpenAI. 2023. ChatGPT - Your Friendly AI Chatbot. https://chat.openai.com/.

Accessed: 2023-04-28.
[56] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[57] Zhenhui Peng, Qingyu Guo, Ka Wing Tsang, and Xiaojuan Ma. 2020. Exploring

the effects of technological writing assistance for support providers in online
mental health community. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems. 1–15.
[58] Edwin A Peraza-Hernandez, Darren J Hartl, Richard J Malak Jr, and Dimitris C

Lagoudas. 2014. Origami-inspired active structures: a synthesis and review. Smart

Materials and Structures 23, 9 (2014), 094001.
[59] Tony Rees, Leen Vandepitte, Bart Vanhoorne, and Wim Decock. 2020. All genera

of the world: an overview and estimates based on the March 2020 release of
the Interim Register of Marine and Nonmarine Genera (IRMNG). Megataxa 1, 2
(2020), 123–140.

[60] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[61] Jami J Shah, Steve M Smith, and Noe Vargas-Hernandez. 2003. Metrics for
measuring ideation effectiveness. Design studies 24, 2 (2003), 111–134.

[62] L Siddharth andAmaresh Chakrabarti. 2018. Evaluating the impact of Idea-Inspire
4.0 on analogical transfer of concepts. Ai Edam 32, 4 (2018), 431–448.

[63] L. Sweetlove. 2011. Number of species on Earth tagged at 8.7 million. Nature (23
August 2011). https://doi.org/10.1038/news.2011.498

[64] Guy Tevet and Jonathan Berant. 2020. Evaluating the evaluation of diversity in
natural language generation. arXiv preprint arXiv:2004.02990 (2020).

[65] Luis A Vasconcelos and Nathan Crilly. 2016. Inspiration and fixation: Questions,
methods, findings, and challenges. Design Studies 42 (2016), 1–32.

[66] Swaroop S. Vattam and Ashok K. Goel. 2011. Semantically Annotating Research
Articles for Interdisciplinary Design. In Proceedings of the Sixth International

Conference on Knowledge Capture (K-CAP ’11). ACM, New York, NY, USA, 165–
166. https://doi.org/10.1145/1999676.1999707

[67] Julian FV Vincent and Darrell L Mann. 2002. Systematic technology transfer
from biology to engineering. Philosophical Transactions of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences 360, 1791 (2002),
159–173.

[68] Samangi Wadinambiarachchi, Ryan M Kelly, Saumya Pareek, Qiushi Zhou, and
Eduardo Velloso. 2024. The Effects of Generative AI on Design Fixation and
Divergent Thinking. arXiv preprint arXiv:2403.11164 (2024).

[69] Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023. Emergent analogical
reasoning in large language models. Nature Human Behaviour 7, 9 (2023), 1526–
1541.

[70] Wikipedia. [n. d.]. Genus. https://en.wikipedia.org/wiki/Genus#cite_note-10.
Accessed: 10-02-2023.

[71] Jen-Her Wu and Shu-Ching Wang. 2005. What drives mobile commerce?: An
empirical evaluation of the revised technology acceptance model. Information &

management 42, 5 (2005), 719–729.
[72] Lixiu Yu, Aniket Kittur, and Robert E. Kraut. 2014. Distributed analogical idea

generation: inventing with crowds. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
Association for Computing Machinery, New York, NY, USA, 1245–1254. https:
//doi.org/10.1145/2556288.2557371

[73] Yuanshuo Zhao, Ioana Baldini, Prasanna Sattigeri, Inkit Padhi, Yoong Keok Lee,
and Ethan Smith. 2018. Data Driven Techniques for Organizing Scientific Articles
Relevant to Biomimicry. In ACM/AAAI Artificial Intelligence, Ethics and Society

(AIES) conference.
[74] Qihao Zhu, Xinyu Zhang, and Jianxi Luo. 2023. Biologically inspired design con-

cept generation using generative pre-trained transformers. Journal of Mechanical

Design 145, 4 (2023), 041409.
[75] Shannon A Zirbel, Mary E Wilson, Spencer P Magleby, and Larry L Howell.

2013. An origami-inspired self-deployable array. In ASME 2013 Conference on

Smart Materials, Adaptive Structures and Intelligent Systems. American Society of
Mechanical Engineers Digital Collection.

[76] Haoyu Zuo, Qianzhi Jing, Tianqi Song, Lingyun Sun, Peter Childs, and Liuqing
Chen. 2022. WikiLink: An encyclopedia-based semantic network for design
creativity. Journal of intelligence 10, 4 (2022), 103.

A INSPIRATION DESIGN PROBE STUDY

PROTOTYPE IMPLEMENTATION

A.1 Representative Mechanism Image Curation

To aid designers’ visual understanding of and pique curiosity
for biological-analogical mechanisms, we retrieve representa-
tive images for corresponding textual mechanism descriptions.
We use Google Custom Search9 with queries as “[organism
name]:[mechanism description]” and the file type set to images
and the safe search mode enabled. We choose the first result of
Custom Search as the visual representation of each mechanism.

A.2 Interface

To facilitate designers’ understanding and synthesis of mechanism
inspirations, we develop several interaction features available on
the probe interface (fig. 7). The Explain button is located in tooltips
that pop up when the user places the mouse over on a mechanism
card in the board UI (fig. 7, first panel). When the user clicks on the
button, BioSpark sends a prompt to GPT4 requesting elaboration
of the interacted mechanism and the organism in the context of the
chosen engineering design problem. The Compare tab is located in
the control bar of the sidebar of the interface. To use this, users need
to first click on (at least) two mechanism cards from the left, saving
them to the ‘saved inspirations’ panel at the top of the sidebar.
There, users can check any two of the saved mechanisms they wish
to compare. BioSpark sends a prompt to GPT4 when the user clicks
on the tab, requesting comparison of pros and cons between the two
mechanisms in the context of the chosen engineering problem. The
result is formatted into a markdown table, with each mechanism
as the header followed by pros and cons rows detailing each point.
The Combine tab is also located in the control bar of the sidebar in
the interface. Similarly with Compare, users can check two saved
mechanisms they wish to see combined. BioSpark sends a prompt
to GPT4 then requesting elaboration of a mechanism that combines

9https://developers.google.com/custom-search/v1/overview
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User clicks the Compare 
button after selecting a pair of 
mechanisms to see pros and 
cons between them.

User clicks the Combine 
button see a potential 
combination mechanism.

Main interface of the system consists of a 
board-based interface that shows diverse 
mechanism clusters (left) and a sidebar (right).

User clicks the Explain 
button in tooltips to see 
mechanism details.

Cluster Label

Problem Query

Sidebar

Figure 7: Inspiration design probe interface and a subset of available interaction features. The interface consists of a left pane

that shows clusters of semantically similar mechanisms that was scrollable, and a right pane that included a holding tank for

user-saved mechanisms. When the user checks two of the saved mechanisms in the holding tank and clicks one of the tabs

underneath, the system generated the corresponding content, such as the comparison of two mechanisms in a pros-and-cons

table, a new idea that combines the two mechanisms, and the ‘Ideate’ button that provided critique on the ‘Combine’ idea.

the two selected mechanisms, and explain its potential advantages
in the context of the chosen engineering problem. The result is also
formatted into a markdown page using section title and headers
for demarcating the content.

B BIOSPARK IMPLEMENTATION DETAILS

B.1 Visual Representation of Inspirations

To support the design goal of visual representations of inspirations
we were inspired by AskNature.org, a popular web repository for
bio-inspired design. AskNature pages are designed to include a
prominent close-up and centered portrait of a species that creates
a striking visual and invokes curiosity.

We retrieve animal images using Google Search and Adobe Stock
Images APIs, and use GPT-4V to rank the quality in terms of the
visual focus and the potential value for mechanism understanding.
The first author developed a prompt (fig. 8) by reviewing the ranked
images, their scores, and rationale for 10 species. Applying this
led to a consistent pattern of reasonable visual processing and
instruction-following, as demonstrated in fig. B.1.2 to be useful.

B.1.1 Prompt Design. The developed prompt is shown in fig. 8.

B.1.2 Sample Scores and Justifications. For the example shown in
fig. 9, the model scored and ranked the images as top-2 and bottom-
2 candidates (from left-to-right) for the species ‘Scaly-foot snail’ as
follows:

Top-1 | Score: 95 | Rationale: This image provides an
↩→ excellent close-up view of the scaly-foot snail,
↩→ highlighting intricate details of the iron-infused
↩→ sclerites and the shell's texture which are indicative
↩→ of its biological mechanisms.

Top-2 | Score: 92 | Rationale: This image offers a clear and
↩→ detailed close-up of the scaly-foot snail, clearly
↩→ showcasing the iron-infused sclerites and the unique
↩→ appearance of its iron-mineralized shell, which are
↩→ valuable for understanding its biological mechanisms.

Bottom-2 | Score: 30 | Rationale: Although this underwater
↩→ image shows the scaly-foot snail in its natural
↩→ environment, the details necessary to comprehend the
↩→ biological mechanisms such as the sclerites and shell
↩→ are obscured and not clearly visible.

Bottom-1 | Score: 10 | Rationale: The image is a stylized,
↩→ cartoon-like representation of a scaly-foot snail,
↩→ lacking detailed visual information about the species'
↩→ biological mechanisms such as the iron-infused
↩→ sclerites and iron-mineralized shell.

B.2 Goal-driven Inspiration Discovery Pipeline

Implementation

B.2.1 Structuring AskNature blog posts into seed problem-
mechanism-organism schemas. To source a set of diverse, high-
quality biological mechanisms for a given problem, BioSpark starts
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[User Message]

Judge each image based on how clearly it shows the real species (i.e., photos focusing on one instance of the species in

↩→ the wild is better than cartoons , drawings , or species photographed in the distance)

{species} and contains visual details that help viewers understand the following biological mechanisms:

===

{formatted_mechanisms}

===

For each image given , reply with a number between 0 and 100 as its "score", where a higher number represents a higher

↩→ quality of the picture ,

and also provide rationale for your decision in "rationale ".

Output a list , with the following format. Exclude any other character than the comma between dictionaries in the list:

[{{" score": "50", "rationale ": "..."}} , ...]

Figure 8: The prompt used to score each species image with respect to its visual focus on the species and how helpful it might

be for understanding the specific mechanism of the species.

Figure 9: The top and bottom two images ranked by GPT-4V

(scores from the left: 95, 92, 30, 10) for ‘Scaly-foot snail’.

from a seed set of expert-curated biological mechanisms on AskNa-
ture (fig. 3, Step 1). AskNature.org provides a curated list of or-
ganisms with detailed descriptions of their unique strategies to
functional problems (e.g., ‘Manage Impact’, ‘Modify Speed’). The
organisms and strategies can be grouped by function and viewed
as a list. To curate a seed set of high-quality mechanisms, we first
choose a functional problem 𝑝 predicted to be highly relevant to
automobile designers, excluding irrelevant functions such as ‘Adapt
Behaviors’, ‘Adapt Genotype’, ‘Coevolve’, ‘Maintain Community’
We access the sub-list of organisms 𝑜 ∈ 𝑂 and strategies posted
to 𝑝 on AskNature’s group-by-function page by parsing the HTML

code using the BeautifulSoup package on Python. We then access
the blog post for each organism-strategy page using the parsed URL
and parse the returned HTML page to get the title, description, and
references (if available).

At this stage, the returned unstructured text is yet to contain
a succinct mechanism description. Furthermore, we found that
some blog posts do not contain any body text despite having a
title and are accessible via the URL. Some of these missing blog
posts indicated that they are in maintenance and/or planned to be
updated. To structure the raw blog post text AskNature(𝑜,𝑝 ) , we
prompt GPT4 [56] to succinctly describe (i.e., using 12 words or
less) the core mechanism (i.e., excluding the qualities or effects, and
focusing on mechanisms with engineering design implications),
given (𝑜, 𝑝) (if blog post text is missing) or (𝑜, 𝑝,AskNature(𝑜,𝑝 ) ).
The returned mechanism description𝑚 along with the function
description makes up the problem-mechanism schema for each
organism: {𝑜 ∈ 𝑂 | (𝑝,𝑚, 𝑜)}.

B.2.2 Iteratively expanding mechanisms dataset by traversing con-
structed taxonomic trees. Using each schema as a seed, we iteratively
prompt GPT4 to find relevant mechanisms for the given mechanism
and problem, using an even mixture of breadth- and depth-focused
expansion strategies (fig. 3, Step 2). To enable structured diversifi-
cation of organisms and their mechanisms beyond prior work that
relied on token-level manipulation or naïvely prompting LLMs, we

guide LLMs how and where to expand by leveraging organism taxo-
nomic hierarchies. At each iteration of expansion (fig. 3, Step 2), we
aggregate the organisms represented in found mechanisms up to
that point, and construct a taxonomic tree featuring seven levels of
hierarchy on Tree of Life: {domain, kingdom, phylum, class, order,

family, genus, species}, where domain representing the highest
level and species representing the lowest level on the hierarchy.

Given this tree, we aim to identify sparsely populated branches
for expansion. We cut the tree at a given reference expansion level
(e.g., class), and sort the taxonomic ranks (nodes) on that level by
the number of its immediate children nodes10, in an increasing
order. For performance, we batch 10 prompts to send to GPT4 for
expansion. For half of the prompts, we instruct breadth-first ex-
pansionwhich asks GPT4 to first identify sibling nodes at the given
reference taxon level and existing nodes (up to 50 most populated
nodes).

For example, the prompt asks “come up with a few biological
classes not in {...names of excluded classes...}”. The breadth-
first expansion prompt then instructs GPT4 to repeat the following:
1) Choose one taxon from the list it came up with; 2) Succinctly
describe (i.e., using 14 words or less) new mechanisms𝑚 related to
a problem 𝑝 . For the rest of the prompts, we instruct depth-first
expansionwhich asks GPT4 to first identify a new children node at
the given reference taxon level and existing children nodes (up to 50
randomly sampled children). For example, the prompt asks “come
up with a few biological families in order araneae that are not any
of {araneidae, ...}”. The depth-first expansion prompt then instructs
GPT4 to repeat a similar procedure as breath-first expansion. The
prompt details are provided in fig. 10 (the depth-focused expansion
prompt) and fig. 11. In the prototype system, we run 10 batches for
expansion to construct dataset of mechanisms for each problem.

The returned list of mechanisms and organisms text are then
fed into the second GPT4 prompt for structuring them into a list
of {mechanism, organism} dictionaries. Finally, using each organism
name, we prompt GPT3.5-turbo to retrieve the seven-level taxo-
nomic hierarchy, based on our model evaluation result showing its
high accuracy (Appendix B.2.3).

10Alternatively, the entire size of the subtree, rather than immediate children, could
be used for sorting
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[System Message]

You are an expert biologist who knows species and their taxonomic hierarchy in detail.

You can also come up with diverse problem -solving strategies found in nature relevant to engineering design problems.

Do the following step -by-step.

[User Message]

1. Come up with a few biological {lower -taxon -plural} **IN** the {taxon} "{term}" AND **NOT** {exclude -user -prompt}

2. Select one {lower -taxon_singular} from the list you came up with.

3. Come up with short descriptions (up to 14 words or less) of new mechanisms found in the selected {lower -taxon -

↩→ singular} that are applicable to the challenge of "{prob }".

4. Repeat step 2 and 3 for each selected {lower -taxon -singular} and think step -by-step. Number each step in your

↩→ thinking and make it as short as possible.

Figure 10: The prompt used for depth-focused expansion of themechanism dataset. The “lower-taxon-singular” or “lower-taxon-

plural” is the singular and plural name of the subsequent level on the tree-of-life hierarchy, of the level “taxon”, respectively.

The “term” is the name of the selected taxon. The “exclude-user-prompt” includes previously generated “taxon” names which

are used to instruct the LLM to avoid duplicate generation. The “prob” and “src-mech” contain the problem and mechanism

schemas to constrain generation.

[System Message]

{same as in the depth -focused expansion prompt }}

[User Message]

1. Come up with a few biological {taxon -plural} **NOT IN** the excluded {taxon -plural} below:

{exclude -user -prompt}

2. {same as in the depth -focused expansion prompt}

3. {same as in the depth -focused expansion prompt}

4. {same as in the depth -focused expansion prompt}

Figure 11: The prompt used for breadth-focused expansion of the mechanism dataset. See the depth-focused expansion prompt

(fig 10) for parameters descriptions.

B.2.3 LLM-based Taxonomy Construction & Accuracy Evaluation.
The main process in our diversification strategy is iterative con-
struction of taxonomic trees at each stage of expansion with a
set of problem-mechanism schemas and corresponding organisms
{𝑜 ∈ 𝑂 | (𝑝,𝑚, 𝑜)} curated (in case of AskNature seeds) or generated
up to that point. To construct the trees, the taxonomic hierarchy of
each organism needs to be known. Here, we restrict our tree con-
struction to seven levels of depth, ranging from the highest to lowest
levels: domain, kingdom, phylum, class, order, family, genus,

species. These levels provide considerable branch-switching op-
portunities for diversification, through significant changes in the
number of members between levels andwithin each level of the hier-
archy. For example, while the highest level domain consists of three
members, Bacteria, Archaea, and Eukarya, there are estimated 8.7M
species in the world [63]. The next level on the hierarchy, Genus,
has an estimated number of 310K members [59], while the number
in the subsequent level, families, is estimated at 8K [51] in 2011.
The number of known species for each node on the hierarchy also
changes considerably, further contributing to the diversification
opportunities. For example while most non-avian reptile genera
have only 1 species each, insect genera such as Lasioglossum and
Andrena have over 1,000 species each, while the flowering plant
genus, Astragalus, contains over 3,000 known species [70].

Our initial exploration of suitable approaches to retrieve or-
ganism taxonomies involved using available resources such as the
Global Biodiversity Information Facility API11, Catalogue of Life [6],
or the Encyclopedia of Life [18], where canonical species names
were retrieved from the Darwin Core List of Terms12 for corre-
sponding organisms in problem-mechanism schemas. However, the
limited coverage, data consistency, and API availability of these
tools prevented their adoption. On the other hand, Wikipedia pro-
vides scientific classification for some of the organism articles (for
example in the Pomelo article13, taxonomic names for Kingdom,

Clade, Order, Family, Genus, and Species are available in the
‘biota’ information box that appears on the right-hand side of the
page). However, this data was not readily available for scalable
generation.
Procedure. LLMs may provide an alternative solution to the limita-
tions of existing approaches for retrieving the taxonomic hierarchy
for a given organism name. To test this idea, we curated 90 gold
taxonomies using Wikipedia that have complete information in
the ‘biota’ scientific classification info box (the complete list of 90
organism names can be found in Appendix B.2.3). For each organ-
ism, we prompted LLMs with each organism name zero-shot using
11https://www.gbif.org/developer/species
12https://dwc.tdwg.org/list/#dwc_Organism
13https://en.wikipedia.org/wiki/Pomelo

https://www.gbif.org/developer/species
https://dwc.tdwg.org/list/#dwc_Organism
https://en.wikipedia.org/wiki/Pomelo
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the chat completions API endpoint14 using each model key. The
prompt used for taxonomy generation for LLMs can be found in
fig. 12. Once the hierarchy data is generated, we lower-cased the
rank names for consistency.
GPT4’s Accuracy.We find that GPT4’s zero-shot taxonomy gen-
eration accuracy to range between 94.4% and 100% (Table 6). The
lowest accuracy was observed in the family taxonomy, followed by
order (96.7%) and genus (98.9%).
Error analysis.We find that some error cases in taxonomy gen-
eration could be attributed to recent changes in classification in
the literature. For example, both GPT4 and GPT3.5-turbo models
classified naked mole-rats as then literature-accepted ‘Bathyergi-
dae’ for their family, same as other African mole-rats. However,
more recently naked mole-rats were placed in a separate family,
Heterocephalidae [2].

Among the error cases overlapping between the two models, we
found cases that either the GPT3.5-turbo or the GPT4 model wins
over the other (e.g., for ‘hummingbird’, GPT3.5-turbo generated
‘archilochus’ as its genus whereas GPT4 generated ‘various’; for
‘boxer crab’, GPT3.5-turbo generated ‘hymenoptera’ which is an
order of insects, whereas GPT4 generated ‘decapoda’, which is the
correct order). In other cases, both models outputted similarly in-
correct answers, for example for ‘sea snail’, GPT3.5-turbo generated
‘neogastropoda’ whereas GPT4 generated ‘archaeogastropoda’ (the
Wikipedia gold answer was ‘lepetellida’).
System Optimization: GPT3.5-turbo’s Accuracy.We find that
GPT3.5-turbo has comparable accuracy levels with GPT4 in zero-
shot taxonomy generation. The highest misaglignment occurred
in genus, with a 6.67% error rate (equivalent to 6 out of 90). Appen-
dix B.2.3 provides a further qualitative error analysis of models’
comparative performance. Based on these results, we opted for
the more efficient GPT3.5-turbo model in our pipeline. We leave
further exploration of the capabilities of smaller, fine-tuned base
LLMs, with implications for LLM cascade15, to future work.
Complete List of Organisms Used for Taxonomy Gen-

eration. {‘spider monkey’, ‘prairie dog’, ‘garden
tiger moth’, ‘african sacred ibis’, ‘argiope
argentata’, ‘ostrich’, ‘groundhog’, ‘danio rerio’,
‘gannet’, ‘deer’, ‘cattle’, ‘glyptodon’, ‘alligator
snapping turtle’, ‘leopard’, ‘arctic ground squirrel’,
‘cormorants and shags’, ‘bears’, ‘squirrels’, ‘herons’,
‘european badger’, ‘golden silk orb-weaver’, ‘aardvark’,
‘seahorses’, ‘banner-tailed kangaroo rat’, ‘hyenas’,
‘pink fairy armadillo’, ‘giant otter’, ‘bighorn
sheep’, ‘hippopotamus’, ‘california ground squirrel’,
‘european bee-eater’, ‘beech marten’, ‘leopard gecko’,
‘tailorbird’, ‘testudinidae’, ‘emperor penguin’,
‘northern pike’, ‘giant clam’, ‘stoat’, ‘horse’,
‘nutria’, ‘tree-kangaroo’, ‘giraffe’, ‘guinea baboon’,
‘ferret’, ‘bonytail chub’, ‘baya weaver’, ‘brook trout’,
‘pelican’, ‘mallard’, ‘roseate spoonbill’, ‘mountain

14https://api.openai.com/v1/chat/completions
15LLM cascade refers to a system design approach that adaptively chooses optimal
LLM APIs for a given query. Smaller, task-specific LLMs are regarded as optimal when
they exhibit higher or similar levels of performance compared to models that are orders
of magnitude larger [16], with all else being equal.

weasel’, ‘pocket gophers’, ‘lybia edmondsoni’, ‘giant
anteater’, ‘common raccoon dog’, ‘dewdrop spiders’,
‘armadillo girdled lizard’, ‘arctic fox’, ‘bison’,
‘swordfish’, ‘bald eagle’, ‘chimpanzee’, ‘asbolus
verrucosus’, ‘sperm whale’, ‘abalone’, ‘golden jackal’,
‘hornet’, ‘zebra’, ‘orangutans’, ‘peregrine falcon’,
‘atlantic cod’, ‘burrowing owl’, ‘african wild dog’,
‘maned wolf’, ‘honey bee’, ‘naked mole-rat’, ‘echidnas’,
‘bowerbirds’, ‘rhinoceros’, ‘beaver’, ‘bombyx mori’,
‘common box turtle’, ‘hummingbird’, ‘domestic sheep’,
‘wolverine’, ‘raccoon’, ‘evergreen bagworm’, ‘pig’,
‘muskrat’}

B.3 Active Ingredient Extraction

To extract active ingredients from the outputs of earlier diversifi-
cation and goal-driven generation steps, we design a prompt for
GPT4 (fig. 13).

B.4 Sparks

B.4.1 Spark Generation Prompt. The prompt used for generating
sparks is detailed in fig. 14.

B.4.2 Precedent-based Diversification. We tested whether this
precedent-based diversification approach leads to a significant im-
provement in terms of semantic diversity compared to generation
without diversification by generating 20 sparks for each of 10 ran-
domly selected seed mechanism inspirations for each of the two
design problems in the user study.

We investigate semantic diversity at two levels, the whole text
and the active ingredient of a spark. To get the active ingredient,
we process the generated spark using the same process as before
for extracting active ingredients from mechanisms (§4.5.2). We then
encode each spark or active ingredient text into an embedding us-
ing the OpenAI’s text-embedding-3-large model. We construct
pairs of spark or active ingredient embeddings using the 20 sparks
generated for each seed mechanism for each of the two design
problems, which amounted to 3,800 pairs, and calculate the aver-
age cosine distance among the pairs. This average represents the
semantic diversity measure, which has been used in similar context
in prior studies and was shown to be a viable measure of semantic
diversity of natural language texts (cf. [25, 30, 64]). In order to en-
sure robustness of our results against the choice difference of the
encoder model, we repeat the analysis using another popular en-
coder – the Sentence-bertmodel for embedding the text [60]. We
find that, at the whole spark text level, the semantic diversity was
significantly higher when precedent-based diversification was used
(M=.24, SD=.073) than not (M=.17, SD=.090) (𝑡ind.(7291.87)=-42.41,
𝑝« .0001).

B.5 Trade-off Analysis Generation

The prompt used for generating a trade-off analysis is detailed in
fig. 16.

B.6 Q&A Response Generation

The prompt used for generating a response to the free-form user
question is detailed in fig. 17.

https://api.openai.com/v1/chat/completions


BioSpark CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[System Message]

You are an expert biologist who knows species and their taxonomic hierarchy very well. Follow the instructions to the

↩→ letter.

- Return the scientific term for each taxonomic rank the species belongs to.

- Enclose keys and values using double quotes ("...") and format them into a Python dictionary.

- Use the taxonomic ranks as keys and corresponding scientific terms as their values.

- Do not add any other text.

[User Message]

What {" domain", "kingdom", "phylum", "class", "order", "family", "genus"} does "{ organism }" belong to? Format your reply

↩→ into a Python dictionary.

Figure 12: The prompt used to generate the taxonomy of each organism.

[System Message]

Reply with a succinct (i.e., 15 words or less) description of the following biological mechanism 's active ingredient.

↩→ Follow the instructions.

[Instructions]

- The active ingredient should describe how the species "act" upon its challenges to mitigate them , and include verb or

↩→ verb phrasees.

- Active ingredient descriptions should also focus on the integral ingredients such as its bodily parts , liquids , or

↩→ evolutionary tactic that are concrete and distinctive.

- Structure your output in the following format (do not output any characters other than the actual json -formatted

↩→ dictionary):

{"desc": "..."}

[User Message]

{mechanism}

Figure 13: The prompt used to extract the active ingredient from a mechanism. The mechanism is description to extract from is

provided as part of the user message to GPT4.

[System Message]

Generate **2** highly different ideas that could solve the design problem: "{ design_prob }".

The design problem has constraints that the ideas must satisfy: {design_constraints}

Generated ideas must be at least broadly related to the user -selected inspiration found in nature.

Generated ideas should be novel and not redundant with the following ideas generated in the past: {prev_sparks}

Describe each idea succinctly (i.e., max 500 characters), but ensure to provide sufficient details to help the user

↩→ visualize the idea.

Start each idea description with a short , eye -catching name that captures the gist.

Output exactly in the following format , WITHOUT ANY OTHER TEXT:

[{{" name": "IDEA 1 NAME", "desc": "IDEA 1 DESCRIPTION "}}, ...]

[User Message]

User -selected inspiration from nature to base your generation on:

===

{user_selected_mechanism_inspiration}

===

Figure 14: The prompt used to generate new sparks. We contextualize the prompt using the design problem description and

the constraints provided with the problem, as well as 20 previously generated sparks for precedent-based diversification. We

explicitly instruct the model to generate non-redundant sparks based on the history of precedents, and be succinct (i.e., under
500 characters), with a descriptive title. Finally the user-selected mechanism inspiration is provided as part of the user message

to GPT4.
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Model Domain Kingdom Phylum Class Order Family Genus

GPT4
100%
(90/90)

100%
(90/90)

100%
(90/90)

100%
(90/90)

96.7%
(87/90)

94.4%
(85/90)

98.9%
(89/90)

GPT3.5-turbo
100%
(90/90)

100%
(90/90)

100%
(90/90)

100%
(90/90)

95.6%
(86/90)

95.6%
(86/90)

93.3%
(84/90)

Table 6: The accuracy of zero-shot taxonomy generation using only the organism name.

Figure 15: (First & Second) Bar graphs show that semantic diversity increased when using the precedent-based diversification

approach, both at the whole spark and active ingredient levels; (Third & Fourth) Repeat analyses show the robustness of these

results against the choice difference of the encoder model, when the Sentence-bert model [60] is used instead of OpenAI’s

text-embedding-3-large.

[System Message]

Generate up to **3** anticipated pros and cons for applying the user -selected mechanism to the design problem: "{

↩→ design_prob }".

The design problem has constraints that the ideas must satisfy: {design_constraints}

Format the 'pros ' and 'cons ' into each column in a markdown table.

Place the header row at the top of the table: "| **PROS** | **CONS** |".

After the header row , place each 'pro '-'con ' row; start each 'pro ' or 'con ' text with a succinct label (3 words or less)

↩→ , enclosed in parantheses.

[User Message]

User -selected inspiration from nature to base your generation on:

===

{user_selected_mechanism_inspiration}

===

Figure 16: The prompt used to generate a new potential design trade-off analysis. We contextualize the prompt using the design

problem description and the constraints provided with the problem. We instruct the model to return the ‘pros’ and ‘cons’ of the

mechanism inspiration in the context of the design problem using a markdown table format that places each pro-and-con pair

in a new row, and give each item in the table a succinct (3 words or less) label. Finally the user-selected mechanism inspiration

is provided as part of the user message to GPT4.

B.7 Detailed Research on Perplexity.ai

In order to support users with drilling down on related scientific
research for each mechanism inspiration on demand, we designed a
designated button (The ‘See more details on Perplexity.ai16’ button,
fig. 2, C○). Through interface pilots, we anticipated that the most
common user workflow for drilling down on related research to
be taking place after the user decides on a particularly interesting
cluster for further consideration. When designing the button, we
initially considered its placement on each of the cluster cards in the
main interface, but decided to move it to the cluster modal view in

16https://www.perplexity.ai/

order to prevent clutter and support effective exploration of diverse
design space on the main interface. In addition, to support the
streamlined exploration – decision – further research workflow, we
specifically placed the button at the end of the extended mechanism
description featured in the modal fig. 2, C○).

We implemented the button’s functionality as opening a new
browser tab that contains search results of relevant research on the
Perplexity.ai website. The search query was pre-populated using
the following template:

Give me relevant details about "[active ingredient]"
↩→ commonly found in [species]

https://www.perplexity.ai/
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[System Message]

Reply to the following user question about the mechanism: "{ inspos }".

Contextualize your response with the design problem: {design_prob}

And with the constraints of the problem: {design_constraints}

[User Message]

User question about the mechanism:

===

{user_question}

===

Figure 17: The prompt used to generate a response to a free-form user question. We contextualize the prompt using the design

problem description, its constraints, and the mechanism the user is asking about.

This functionality design was a compromise following our technical
investigation at the time of development that showed the difficulty
of implementing Perplexity.ai’s search page results inside a native
React.js application interface17 and the lack of API18 support for
evidence generation19.

Figure 18: An example Perplexity.ai result page in a new

browser tab when the user clicks on the ‘See more details

on Perplexity.ai’ button on the mechanism modal view. The

page describes how the froghopper exoskeleton contains a

composite structure of both rigid chitin and the elastic pro-

tein resilin that allows the exoskeleton to store energy and

then release it quickly to power the froghopper’s powerful

jumps, and its supporting research, that may provide valu-

able details as described in our scenario (§4.1).

C USER STUDY ADDITIONAL DETAILS

C.1 Study System Tutorials

Before participants start with each of the two main task in each
condition, they were given a tutorial of the assigned systems via
screen sharing. The interviewer demonstrated a step-by-step pro-
cess and the main features of each system using a prepared script

17Perplexity.ai prohibits user requests that attempt to render its search results natively.
18https://docs.perplexity.ai/
19Last tested on March 17th, 2024.

that took around 8 minutes for the BioSpark condition which had
more features, and around 5 minutes for the baseline condition. In
the baseline condition, participants were instructed to open up 5
different URLs each pointing to a pre-curated list of mechanisms for
a functional category. The 5 functional categories used in the study
were the same as those that were used for the BioSpark backend
dataset pipeline, and they were: Manage Impact, Manage Tension,
Manage Compression, Manage Turbulence, and Modify Speed. In
addition, participants in the baseline condition were instructed to
sign in and open ChatGPT, and freely use it for understanding and
ideating for the design problems using the information found from
AskNature. When participants came up with each new idea during
the task, they were told to write it down in a prepared Google
spreadsheet that was shared in the beginning of the task. In the
BioSpark condition, participants were told to keep the stream space
as a holder for their ideas, and thus delete any ideas they did not
like or edit the text directly.

C.2 Examples of Judges’ Novelty, Feasibility,

Value Evaluation

The following tables (Table ??,??) present 8 examples of the judges’
evaluations of design ideas in terms of novelty (N), feasibility (F),
and value (V), along with the corresponding rationales. The eval-
uations were conducted independently by a domain expert and
the first author using an agreed-upon rubric, demonstrating high
reliability across these dimensions.

C.3 Study Result: Top-5 and Bottom-5 Ideas,

Scores, and Coding Analogical Transfer

See Table 9.

C.4 Study Data Analysis: Extraction of unique

design constraints described in each idea

To analyze the user engagement patterns involving consideration
of design constraints (§6.4.3), we first extract the unique design
constraints described by participants in each idea. We use GPT4
(gpt-4-turbo-preview) with a prompt (fig. 19) to perform the
extraction. The first author reviewed the extracted constraints in
terms of their coherence and uniqueness for a random set of 20
ideas and found that the extraction was satisfactory in terms of both
the uniqueness of extracted constraints and their coherence. Using

https://docs.perplexity.ai/


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kang et al.

Formatted Ideas N F V Novelty Rationale Feasibility Rationale Value Rationale

Idea 38: Inspired by the protective,
retractable nature of turtle shells,
this bike rack features a hard, aero-
dynamic shell that encases bikes
completely. Its surface is segmented
like scutes, allowing it to expand or
contract to snugly fit 16", 20", and
26" bikes. When not in use or when
driving, the shell retracts, minimiz-
ing drag and protecting bikes from
theft and weather.

8 6 8 Connection to the turtle shell
geometry is novel. The fo-
cus on the particular property
of turtle shells which is that
there is an empty space in-
side the shell where limbs can
be retracted/folded into, and
applying this design princi-
ple might provide useful new
ideas for shape-shifting bike
racks when the car is moving
vs. stationary.

The estimated feasibility of the idea
is somewhat high to start because
the main mechanisms are extrac-
tion or contraction and segmented
surface panels, which for the most
part feel manufacturable with cur-
rent tech and resources. However,
more concrete design exploration,
material selection, components de-
sign etc. may reveal previously
unknown engineering challenges
(hence the score is somewhat low-
ered for that reason).

The aerodynamic shape
with expandable and con-
tractable segmented scutes
will be valuable for novel
bikerack designs, and it
opens up a new design
space for future ideas. It
may also be applicable to
other domains where air
or water resistance need to
be considered, raising its
value.

Idea 2: Tortoise Shell Geometry -
For the bike racks stability & dura-
bility, I would use layers of different
properties to add on or improve the
strength mimicing the tortoise shell
geometry. Also I would adapt this
feature since it provides very good
longevity of the product which en-
hances user satisfaction & trust.

6 3 4 In contrast to the earlier tur-
tle shell idea that focused on
the specific retraction mech-
anism, this one focuses more
on the shape and geometry of
the shell. However, the “use
layers of different properties”
is not very specific or novel.

“Use layers of different properties
to add on or improve the strength
mimicing the tortoise shell geom-
etry” sounds like it would require
a lot of materials research and fea-
sibility testing before making this
idea feasible and useful.

For durability, an efficient
shell geometry that can
be mass produced could
be valuable. However it
is unclear how multiple
bike sizes will be accom-
modated. Hence the value
is somewhat low.

Idea 18: Rack should be top
mounted so that the bike is facing
the same direction as the car to
minimize drag (i.e. least amount of
surface exposed to air during the
ride)

1 10 2 “Top mounted rack” already
exists and does not offer
much novelty in the idea.

Rack mounted atop and facing the
same direction as the car already ex-
ists as a commercial product, hence
high engineering feasibility of the
idea.

Top mounted racks are
valuable, but the idea
already being commer-
cially available, unclear
how much additional
value (of any) this idea
adds. Furthermore, it
does not specify how
the air resistance could
be further reduced nor
how the solution will
accommodate different
bike sizes, hence the value
of the idea is low.

Idea 79: LeapLock FlexFit. Inspired
by Anura’s powerful legs, this bike
rack uses a bio-mimetic spring
mechanism that stretches to accom-
modate 16", 20", and 26" bikes. Its
skeletal structure, mimicking frog
bones, flexes to absorb road vibra-
tions, protecting bikes. Aerodynam-
ically shaped to reduce drag, it
’leaps’ into a compact form when
not in use, preserving fuel effi-
ciency.

9 6 9 The spring mechanism that
changes shape when in use
vs. not, and also being able to
absorb vibration and impact
feels like a pretty novel idea.

Springs already exist, and there is
presumably a large body of research
around them that this idea could
draw upon. However, the specific
kinds of springs that exhibit the
right kinds of properties here (like
stretching the right amounts to ac-
commodate for different bike sizes)
might require a non-trivial amount
of additional research into the ma-
terials and the construction of the
springs etc.

This kind of novel spring
mechanism that is aerody-
namically shaped and size-
adjustable could be highly
valuable.

Table 7: Sample judges’ evaluations of design ideas by novelty (N), feasibility (F), and value (V), with rationales (continued in

Table 8).

this data, we find that the length of each idea was also significantly
correlated with the number of design constraints described in it
(𝜌=.58, 𝑝 < .0001) (see §6.4.3 for the related analysis).

C.5 Study Data Analysis: Extraction of the

species’ names that participants described

as inspiring their ideas

To analyze the diversity of the species that participants were in-
spired from for their own ideas, we use GPT4 (gpt-4-turbo-prev

iew) with a prompt (fig. 20) to extract the species name from each
participant idea and normalize it. The first author then reviewed
the extracted species’ names in a random sample of 20 ideas and
found that the extraction accuracy was satisfactory.
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[System Message]

We 're preparing each idea description for measuring the degree to which various design constraints were considered.

Chunk the idea description into unique segments each of which describe consideration(s) for a single coherent design

↩→ constraint.

Output exactly in the following format (use double quotation marks to encapsulate any string), without any other text:

{" constraint_considerations ": [[" idea 1 constraint 1", "idea 1 constraint 2", ...], ... }

[User Message]

{list_of_participant_ideas}

Figure 19: The prompt used to extract coherent chunks of text that relates to unique design constraints. Participants’ ideas are

stringified and provided as part of the user message to GPT4.

[System Message]

We 're extracting the source species ' name that inspired each idea from the idea description.

Output exactly in the following format (use double quotation marks to encapsulate any string), without any other text:

{" source_species ": ['species name for idea 1', 'species name for idea 2', ...] }

[User Message]

{list_of_participant_ideas}

Figure 20: The prompt used to extract the species’ names that inspired participants’ ideas. Participants’ ideas are stringified and

provided as part of the user message to GPT4.
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Formatted Ideas N F V Novelty Rationale Feasibility Rationale Value Rationale

Idea 111: Drawing from
the compact and sturdy de-
sign of a beetle’s shell, this
bike rack folds out from a
sleek, aerodynamic shell at-
tached to the car’s roof. It
adjusts to fit various bike
sizes, using a secure, ad-
justable locking mechanism
that mimics the versatility
of beetle wings.

8 5 7 The connection to the beetle’s
shell is novel. The connection be-
tween the beetle wings and ad-
justable locking mechanisms is
also quite novel. It feels there
is a fairly large gap of research
from beetle wings to adjustable
locking mechanisms, hence un-
clear whether current tech can
manufacture it. adjustable lock-
ing mechanism could be valuable
for accommodating different bike
sizes and dynamically changing
volume/shape for aerodynamic ef-
ficiency. The expandable shell at-
tached to the roof of a vehicle is
also a somewhat valuable idea.

It feels there is a fairly large gap
of research from beetle wings to
adjustable locking mechanisms,
hence unclear whether current
tech can manufacture it.

adjustable locking mechanism
could be valuable for accom-
modating different bike sizes
and dynamically changing vol-
ume/shape for aerodynamic effi-
ciency. The expandable shell at-
tached to the roof of a vehicle is
also a somewhat valuable idea.

Idea 18: Dragonfly/Dam-
selfly wing structure con-
sider structure for titanium
frame

5 8 3 The focus on the dragonfly wing
structure seems novel. But the
idea lacks substantive details as
to what exactly about the wing
structure is it that would make the
frame structure better.

There is a decent amount of omit-
ted details for which additional re-
search may be required to fill the
gap. I think the overall wing pat-
tern may be something that cur-
rent manufacturing could repli-
cate in a relatively straightfor-
ward manner.

This idea alone does not di-
rectly address the challenge of
wheelchairs going up the stairs.
It is unclear how applying the
dragonfly wing structure to the
frame (hence perhaps making
the frame sturdier?) will help
wheelchair designs to move up
the stairs. The wing structure-
inspired frame may be light and
durable, which is desirable and
meets one of the specified prob-
lem constraints, and could be used
in combination with other mecha-
nisms that actually solve the main
challenge of going up the stairs?

Idea 66: Inspired by tor-
toises, this wheelchair fea-
tures a retractable design
where the seat, wheels, and
footrest fold into a durable,
hard shell case. This shell
is made from lightweight,
impact-resistant materials,
ensuring protection during
transit. For stair climbing,
it utilizes a set of extend-
able tracks that grip onto
steps, smoothly elevating
the user.

7 7 7 The focus on the retractability of
the shell is novel and distinguish-
able from amore generic variation
of the idea that would say some-
thing like "apply the shell-like ge-
ometry". For climbing, it mentions
the use of extendable tracks that
grip on to steps. This part perhaps
isn’t as novel in light of existing
wheelchair ramps and other track-
based mechansisms.

Each individual parts of the solu-
tion seems fairly feasible given the
existing similar mechanisms in
other commercial products (shell-
like geometry in backpacks or
clothing, like extendable tracks in
some other products...) However,
producing an elegant design solu-
tion that combines the different
aspects of the idea might be diffi-
cult and less feasible.

The retractable design with ex-
tendable tracks design would be
valuable assuming they work well
with different types of stairs while
also foldable and durable.

Idea 15: German
engineering- iStruct
robot as a model for
wheelchair

8 5 6 This idea reimagines wheelchair
design using a robot, which feels
like a provocative idea.

The feasibility assessment would
require much more specification
of how the iStruct robot would
actually work as a wheelchair
and various other individual sub-
problems related to that to make
them into a coherent whole. It
feels like there is a substantial
amount of uncertainty about what
exactly the idea is, and how the
iStruct robot would be adapted
into a feasible engineering solu-
tion.

Robotic design would be useful be-
yond just stair climbing and has
potential to address challenges of
any rough terrain types, however
it would not be as foldable or light-
weight or compact.

Table 8: Additional sample judges’ evaluations of design ideas by novelty (N), feasibility (F), and value (V), with rationales.
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Rank Cond. Prob. Score An-Tr? Idea (Summarized)
T1 BioSpark 2 7.86 Y This bike rack uses a bio-mimetic spring mechanism, inspired from Anura’s powerful legs,

to stretch (and compress) to accommodate different bike sizes. Its skeletal structure, mimicking
frog bones, flexes to absorb road vibrations, protecting bikes. Aerodynamically shaped to reduce
drag, it ‘leaps’ into a compact form when not in use, preserving fuel efficiency.

T2 BioSpark 2 7.62 Y Ultrasonic sensors to adjust its grip on different bike frames automatically, maybe something
like cetaceans’ echolocation. As a bike is loaded, sensors emit sound waves that measure the
frame’s size, adjusting the rack’s arms for a perfect fit without manual intervention. Its sleek,
aerodynamic design mimics a beluga’s streamlined shape, minimizing air resistance.

T3 BioSpark 2 7.62 Y The bike rack utilizes smart materials to morph its surface to perfectly fit different bike sizes,
inspired by the changing shapes of leaves. It’s mounted on the sedan’s roof, its leaf-like design
folds to minimize air resistance, enhancing aerodynamics. When bikes are mounted, it expands
and shapes itself to the contours of each bike, ensuring a secure fit for 16", 20", and 26" frames
without adapters, then folds back seamlessly when not in use.

T4 BioSpark 2 7.49 Y Bitterns’ balance in currents→ A dynamic, flexible support system.
T5 BioSpark 2 7.47 Y Tree frogs’ adhesive toe pads→ a sticky, yet non-residual, surface-based attachment.
B5 BioSpark 1 5.07 Y Serpentine movement→ Wheelchair with a flexible, segmented moving base.
B4 BioSpark 2 5.01 Y Diatoms’ protective frustules→ Rear-mounted rack w/ adjustable, silica-patterned arms.
B3 BioSpark 1 4.93 Y Froghopper’s shock-absorbent exoskeleton → Lightweight & foldable material.
B2 BioSpark 2 4.48 N Bikes are ‘locked’ in place by a vacuum seal mechanism.
B1 BioSpark 1 3.98 Y Retractable ‘legs’; Jointed segments that extend and contract to climb.
T1 Baseline 2 6.80 Y Aerodynamically shaped bikerack design inspired by how marine mammals like dolphins

and whales have evolved flippers and tail fins that optimize their movement in water. Their body
shape tends to be more rounded than that of fish but is streamlined for efficient travel. The tail
fins (flukes) provide powerful propulsion, while the pectoral flippers are used for steering and
stabilization.

T2 Baseline 2 6.49 Y A series of adjustable, branching arms extend gracefully from the main body, inspired by the
natural branching patterns of trees. These arms adjust intuitively to hold various bike frames
snugly, replicating the way branches support varying weights and shapes.

T3 Baseline 2 6.49 Y The rack’s “skin” mimics shark denticles, promoting laminar flow and drastically reducing
drag. It’s not only about fuel efficiency; it’s about harmonizing with the very essence of movement.

T4 Baseline 1 6.33 N Compressing and expanding mechanism for stairs; multiple wheel contacts.
T5 Baseline 2 6.32 Y Marine polychaete worm-inspired design with tentacle-like grips for bikes.
B5 Baseline 1 2.82 N Wheelchair self-repair using Memory Shape Alloy.
B4 Baseline 1 2.82 N Multiple contact points for wheelchair wheels.
B3 Baseline 1 2.71 N Crystal sensors for damage detection and vital monitoring.
B2 Baseline 2 2.71 N Top-mounted rack, bike aligned with car for aerodynamics.
B1 Baseline 1 2.62 N Golden bamboo material for durability and lightweight design.

Table 9: Top-5 and Bottom-5 scoring ideas from each condition, and they exhibit analogical transfer. ‘Rank’: T1 – T5 correspond

to Top-1 – Top-5 and B5 – B1 to Bottom-5 – Bottom-1 rankings; ‘Cond.’ represents the condition in which the idea was produced;

‘Prob.’ represents the problem the idea is for (1: the ‘wheelchair’ problem; 2: the ‘bike rack’ problem); ‘Score’ represents the

geometric mean of expert-judged novelty, value, and feasibility scores; ‘An-Tr?’ is a binary value representing the presence of

Analogical Transfer; ‘Idea’ is summarized for conciseness, except for the top-3 ideas that were presented in verbatim. Boldfaced

text in the verbatim ideas represents the source and the target in analogical transfer.
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